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Abstract

This paper estimates a bivariate VAR-GARCH(1,1) model to examine linkages be-

tween food and energy prices. The adopted framework is suitable to analyse both mean

and volatility spillovers, and also allows for possible parameter shifts resulting from four

recent events, namely: 1) the 2006 food crisis, 2) the Brent oil bubble, 3) the introduc-

tion of the Renewable Fuel Standard (RFS) policy, and 4) the 2008 global financial crisis.

The empirical findings suggest that there are significant linkages between food and both

oil and ethanol prices. Further, the four events considered had mixed effects, the 2006

food crisis and 2008 financial crisis leading to the most significant shifts in the (volatility)

spillovers between the price series considered.
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1 Introduction

The relationship between energy and food prices has been analysed extensively in the lit-

erature. Their behaviour in terms of trends and volatilities appears to be rather similar.

The recent crisis in the period 2006-08 substantially affected these prices (e.g. wheat prices

increased from $3.8 to $8.8 per bushel, and corn prices from $2.6 to $7). This sharp increase

is a serious concern for the developing economies. According to the World Bank report (De

Hoyos and Medvedev, 2009), the impact of the recent crisis on global welfare was to push

between 75 and 160 million people into poverty. Furthermore, food-importing countries were

exposed to political instability and internal conflicts. The higher price volatility has also

generated additional uncertainty and had adverse effects on investment.

The links between energy and agricultural commodity prices were first analysed by Barnard

(1983). The three-fold increase in the demand for bio-fuel in recent years has led to the intro-

duction in the US in 2005 of the so-called Renewable Fuel Standard (RFS) policy. This policy

aims to reduce pollution by requiring vehicles to use Methyl Tertiary Butyl Ether (MTBE)

an oxygenate, as gasoline to improve combustion and reduce harmful vehicle emissions. The

RFS policy is in effect in New York and Connecticut, states that had previously accounted

for a total of 42 percent of national MTBE consumption. It was approved in 2005 but was

not enforced until June 2006. This new standard required motor fuels to contain a minimum

amount of fuel coming from renewable sources, such as biomass (e.g., ethanol), solar power

or wind energy. Since then, ethanol has been the only practical way to comply with the

new standard. Therefore, in mid-2006, ethanol became the only available gasoline additive

(Avalos, 2014). Abbott et al. (2009) described the link between food and fuel and argued

that these two markets were historically independent until 2006, when ethanol usage became

large enough to influence world energy prices. From 2006, the RFS policy started having an

impact on ethanol price as much as on oil and gasoline, in addition to other factors such as

supply and demand, macroeconomic variables, and exchange rates.

The higher demand for ethanol oil as a bio-fuel alternative to natural oil has led to more

land being used for its production. The ‘food versus fuel claim’ posits that an increased

demand for bio-fuel production may result in less land allocated to food production, which

can lead to higher food prices. Bio-fuel production increased three-fold in the period 2006-

2012. De Gorter et al. (2013) argued that food prices increased owing to RFS policies in rich

countries only.

Most studies rely on standard supply and demand (e.g., Babcock, 2008) or equilibrium

frameworks to model both fuel and food prices (e.g., Zhang et al„ 2014; and Serra et al.,

2011b). These models have been criticised for not being sufficiently supported by empirical

data and are plagued by poor performance (Hertel and Beckman, 2011; Serra and Zilber-

man, 2013); in addition, equilibrium models mainly employ annual data, which is a clear

limitation. For instance, Timilsina et al. (2011) developed a multi-country, multi-sector gen-

eral equilibrium model and used recursive techniques to simulate various oil price scenarios

and assess the corresponding impact on bio-fuels production, agricultural output, land-use

change and global food supply. One of the scenarios considered higher oil prices leading to

an increase in bio-fuel price and a decrease in food supply. The effects of exchange rates

have also been examined by other authors, such as Durvell et al. (2014), who estimated an

error correction model for cereal, food and non-food consumer prices using monthly data and
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found that agriculture and food have a dominant role in Ethiopia’s economy. Baquedano et

al. (2014) also used a (single equation) error-correction model to test for long-run relation-

ships and price transmission from macroeconomic factors to consumer prices for wheat, rice,

maize, and sorghum in the main urban centres of a selected number of countries in Asia, Latin

America, the Caribbean, and Sub-Saharan Africa. Their results confirm that open economies

are more vulnerable to international shocks. Hochman (2014) adopted a multi-region frame-

work dividing the world into regions, where demand for corn, rapeseed, rice, soybean, and

wheat is shown to consist of demand food/feed, inventory, and (where applicable) bio-fuels.

His results indicate that up to 25% of the price of corn is driven by bio-fuel prices and up to

7% of the price of soybean by energy prices. He also examined the impact of shocks during

periods when there are large inventories of food.

Very few papers examine the volatility of energy and agricultural prices. For instance,

Serra (2013) estimated volatilities to investigate the impact of bio-fuels on food and fuel

prices up to 2013. Mcphail and Babcock (2012) showed that ethanol, RFS and the blend wall

lead to more inelastic demand for both corn and gasoline, which makes both markets more

susceptible to supply shocks and leads to greater price volatility. They also estimated supply

and demand elasticities for the US corn, ethanol, and gasoline markets using a three-stage

least squares approach to provide empirical evidence for their theoretical set-up. Further,

they developed a stochastic partial equilibrium model that explicitly accounts for important

sources of volatility in the corn-ethanol-gasoline links, including stochastic corn yields and

crude oil prices. Babcock and Jacinto (2011) argued that only 8% of the increase in corn

prices during the 2006-2009 period was the result of ethanol subsidies. They attributed the

remainder to market forces and other factors, such as droughts, floods, a severe US recession,

and two general commodity price surges. Ethanol policies, such as RFS, mandates and

blend wall regulations, can affect the price variability of both corn and gasoline. Qiu et al.

(2012) used a structural vector auto-regression (SVAR) model to show how supply/demand

structural shocks affect food and fuel markets. Their results support the hypothesis that

increased bio-fuel production causes short-run food price increases but not long-run price

shifts. However, agricultural products, such as corn, are affected by their own trade shocks.

Their findings also suggest complementarity between ethanol and gasoline and the idea that

demand and supply market forces are the main drivers of food price volatility.

The study of volatility can benefit from high frequency data both because high-frequency

volatility is easier to predict and because it has proven useful to forecast over longer horizons

(Andersen et al., 2003). The most popular view is that the grain price boom from 2006

was the result of many factors, with bio-fuels being just one of them, and that bio-fuel

policies account for only a fraction of the effects of bio-fuels (de Gorter et al., 2014). The

food crisis caused the price of wheat, corn and soybeans to double between 2006 and mid-

2008. Volatility issues and macro policies aimed at achieving more stable food and oil prices

have become increasingly important (Wright and Parkash, 2011). Surveys of the literature

investigating the economic impact of bio-fuels have paid particular attention to structural

models (Kretschmer and Peterson, 2010). Zhang et al. (2009), using weekly data, examined

price volatility interactions between the US energy and food markets in the period 1989-2007

by estimating the BEKK model of Engle and Kroner (1995). Their results suggest that there

is no relationship between fuel (ethanol, oil and gasoline) prices and agricultural commodity

3



(corn and soybean) prices. However, they did not control for the 2006 food crisis and the

2005 RFS policy.

Headey (2011) and Serra (2013) argued that previous research has generally relied on a

specification of the variance-covariance matrix that does not allow for asymmetric impacts

of price increases and decreases on volatility. They found that the high volatility persistence

of commodity prices may be due to failing to account for structural breaks. Serra et al.

(2011a) also used a standard BEKK model to analyse volatility interactions between crude

oil, ethanol and sugarcane prices in Brazil using weekly prices during the 2000-2008 period. In

a related study on the same topic Serra (2011) used semi-parametric MGARCH models. Both

papers suggest that there is a relationship between sugar and energy prices. Wu et al. (2011)

estimated a restricted asymmetric MGARCH model using US corn and oil prices from 1992 to

2009 to investigate volatility spillovers between oil and corn prices. They concluded that corn

markets have become much more connected to crude oil markets after the implementation

of the RFS policy of 2005. Du et al. (2011) used futures market prices for crude oil, corn

and wheat from 1998 to early 2009 to estimate stochastic volatility in their returns. The

correlation coefficient between crude oil and corn markets was found to increase from 0.07

to 0.34 after October 2009, while that between crude oil and wheat markets increased from

0.09 to 0.27, indicating a much tighter linkage between crude oil and agriculture commodity

markets in the second period. Trujillo-Barrera et al. (2012) estimated a similar model using

futures prices for crude oil, ethanol and corn from 2006 to 2011, and identified volatility

spillovers from the crude oil futures market to the ethanol and corn futures markets.

Nazlioglua et al. (2013) employed a univariate GARCH model and impulse responses

to examine volatility transmission between world oil and selected world agricultural com-

modity prices (wheat, corn, soybeans, and sugar). They considered two sub-periods, before

and after the food crisis, 01/01/1986 − 31/12/2005 and 01/01/2006 − 21/03/2011. Their

causality-in-variance tests suggest that there is no transmission between oil and the agricul-

tural commodity markets in the pre-crisis period, and no oil market volatility spillovers to

the agricultural markets (with the exception of sugar during the post-crisis period).

Gardebroek and Hernandez (2013) examined oil, ethanol and corn prices in the US be-

tween 1997 and 2011 and used a multivariate GARCH approach to estimated interdependence

and volatility spillovers between these markets. Their results indicate higher interaction be-

tween ethanol and corn markets in recent years and particularly after 2006, when ethanol

became the sole alternative oxygenate for gasoline. However, they observed significant volatil-

ity spillovers only from corn to ethanol prices but not the reverse. Also, they did not find

sizeable volatility spillovers from the oil to the corn markets. In another study using the

univariate GARCH (1, 1) and EGARCH models, Wang and Zhang (2014) examined price

volatility interactions between China’s energy and bulk commodity markets between 2001 and

2010. They split the sample before and after 2007 and found that there is greater volatility

clustering between the food and oil markets after the 2007 oil shock.

Olsen et al. (2014) used a univariate GARCH model for food prices only. They found

evidence of different structural breaks for energy and food commodities (such as grains)

respectively. The latter are more volatile than other commodity prices (for metals) and

display bidirectional (linear and non-linear) linkages to stock price indices. These findings

suggest an impact on aggregate price indices not only of shocks to commodity demand and
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supply, but also of non-commodity shocks, as embodied in aggregate price indices, both

linearly and nonlinearly. Chen et al. (2014) identified in the crude oil market a structural

break in July 2004. Gorter et al. (2014) showed that grain prices have increased significantly

since 2006 owing to several factors. Jebabli et al. (2014) focused on the recent financial crisis

and its effects on volatility spillovers between food and energy prices. Fan and Xu (2011)

stressed that the recent bubble in oil prices (2004-2008) and the resulting structural break

should also be considered.

Mensi et al. (2014) examined the impact of three types of OPEC news announcements

on the volatility spillover and persistence in the spot prices of oil and a set of agriculture

commodity prices using a multivariate GARCH. OPEC announcements were found to exert

influence on oil markets.

Han et al. (2015) used a multivariate normal mixture model and daily futures data

from January 2000 to January 2014 to capture the structural properties of energy and three

food commodities (corn, soybeans and wheat). They identified five breaks: (1) investment

into commodity factors in 2004, (2) the food crisis (3), the RFS policy act of 2005, (4) the

financial crisis, (5) the introductio of new European Union rules for bio-fuels in October 2012.

Their results indicate that it was the financial crisis that had the most significant impact on

the food-energy nexus.

None of the papers mentioned above conducted proper tests for and determined the dates

of possible structural breaks in the energy-food spot prices volatility spillovers. The present

study aims to fill this gap by examining the impact of well-known recent events on spillovers

between food and energy prices in both the first (mean) and second (volatility) moments in

the context of a VAR-GARCH model with a BEKK representation. 1 The layout of the

paper is as follows. Section 2 outlines the econometric model. Section 3 describes the data

and discusses the empirical results. Section 4 summarises the main findings and offers some

concluding remarks.

2 The Econometric Model

We model the joint process governing energy prices (oil and ethanol) and food prices (cacao,

coffee, corn, soybeans, sugar and wheat) using a bi-variate VAR-GARCH(1,1) framework2.

The model has the following specification:

xt = α+ βxt−1 + γyt−1 + et (1)

where xt = (Energyt, Foodt).

The parameter vectors of the mean equation (1) are the constant α = (α1, α2) and the au-

toregressive term β = (β11, β12 + β
∗

12 + β
∗∗

12 + β
∗∗∗

12 + β
∗∗∗∗

12 | β21 + β
∗

21 + β
∗∗

21 + β
∗∗∗

21 + β
∗∗∗∗

21 , β22) .
3 To control for the business cycle (Campbell, 1999) we include the S&P 100 Index (yt) in

the mean equation (this effect is measured by the parameters γ = (γ1 | γ2). To account for

the possible effects of the recent crisis, we include four dummy variables: the first (denoted

1Caporin and McAleer (2012) showed that BEKK models should be preferred to DCC models when working

with high-frequency data.
2The model is based on the GARCH(1,1)-BEKK representation proposed by Engle and Kroner (1995).
3Note that the dummy variables are used to model shifts in the cross-parameters only, not in the autore-

gressive terms.
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by ∗) captures the 2006 food crisis (Nazlioglu et al., 2013); the second (denoted by ∗∗), fol-

lowing Fan and Zu (2000), captures the oil crisis during the March 19, 2004 - June 6, 2008

period; the third (denoted by ∗∗∗) controls for the RFS policy implementation in June 2006,

as suggested by Avalos (2014); finally the fourth (denoted by ∗∗∗∗) corresponds to the 2008

global financial crisis (originating on 15 September 2008, i.e. on the day of the collapse of

Lehman Brothers), as suggested by Jebabli et al. (2014).

The residual vector et = (e1,t, e2,t) is bi-variate , et | It−1 ∼ (0, Ht), with its corresponding

conditional variance covariance matrix given by:

Ht = C
′

0C0 +A
′

11

�
e21,t−1 e2,t−1e1,t−1
e1,t−1e2,t−1 e22,t−1

�

A11 +G
′

11Ht−1G11 (2)

The parameter matrices for the variance Equation (2) are defined as C0, which is restricted

to be upper triangular, and two unrestricted matrices A11 and G11.Therefore, the second

moment will take the following form:4

A11 =

�
a11 a12 + a

∗

12 + a
∗∗

12 + a
∗∗∗∗

12 + a∗∗∗∗12

a21 + a
∗

21 + a
∗∗

21 + a
∗∗∗

21 + a
∗∗∗∗

21 a22

�

(3)

G11 =

�
g11 g12 + g

∗

12 + g
∗∗

12 + g
∗∗∗∗

12 + g∗∗∗∗12

g21 + g∗21 + g
∗∗

21 + g
∗∗∗

21 + g
∗∗∗∗

21 g22

�

(4)

Equation (2) models the dynamic process of Ht as a linear function of its own past

values, Ht−1, and past values of the squared innovations
�
e21,t−1, e

2
2,t−1

�
. The BEKK model

guarantees by its construction that the covariance matrix in the system is positive definite.

Given a sample of T observations, a vector of unknown parameters θ and a 2 × 1 vector of

variables xt, the conditional density function for model (1) is:

f (xt|It−1; θ) = (2π)
−1 |Ht|

−1/2 exp

�

−
u
′

t

�
H−1
t

�
ut

2

�

(5)

The log-likelihood function is:

L =
T�

t=1

log f (xt|It−1; θ) (6)

where θ is the vector of unknown parameters. The standard errors are calculated using

the quasi-maximum likelihood methods of Bollerslev and Wooldridge (1992), which is robust

to the distribution of the underlying residuals.

4The parameter (a21) in Equation (3) measures the causality effect of variable 2 on variable 1, whereas

(a21 + a
∗

21), (a21 + a
∗∗

21) , (a21 + a
∗∗∗

21 ) and (a21 + a
∗∗∗∗

21 ) measure the possible effect of the 2006 food crisis, the

2004- 2008 oil bubble accummlation period, the mid- 2006 RFS policy change, and the 2008 financial crisis,

respectively.
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3 Empirical Analysis

3.1 Data

We use daily data, from Bloomberg, for two energy spot prices (crude oil and ethanol) and

six food commodity prices (cacao, coffee, corn, soybeans, sugar and wheat) over the period

1/1/2003-6/6/2015, for a total of 2253 observations. Furthermore, we use the S&P500 stock

market index as a proxy for the US business cycle (Campbell, 1999). We define daily returns

as the logarithmic differences of the energy and food price indices.

Please Insert Tables 1-2 and Figurer 1 and 2 about here

Figure 1 and 2 show food and energy commodity spot prices and returns respectively. The

descriptive statistics presented in Table 1 concern the two sub-periods before and after the

2006 food crisis. Post-crisis volatilities are significantly higher for oil, sugar and wheat. The

increased volatility and larger extreme events (measured by maximum and minimum values)

observed in the second sample affect, as one would expect, the Jarque-Bera statistics which

indicate larger departures from normality in the post-crisis compared to the pre-crisis sample.5

The sample pairwise correlations with food commodities, reported in Table 2, are generally

positive for oil and negative for ethanol. There is evidence of correlation between food and

energy price returns before the food crisis, significant and positive correlation between oil and

cacao, coffee, corn, soybeans, sugar and wheat, and negative correlations between ethanol and

cacao, and sugar in the post-crisis period.

3.2 Hypotheses Tested

We test for mean and volatility spillovers, by placing restrictions on the relevant parameters;

specifically, we consider the following four sets of null hypotheses:

1. Tests of no spillovers from food to energy prices

H01a: Food → energy: β12 = 0

H01b: Food → energy after the first breakpoint: β∗12 = 0

H01c: Food → energy after the second breakpoint: β∗∗12 = 0

H01d: Food → energy after the third breakpoint: β∗∗∗12
H01e: Food → energy after the fourth breakpoint: β∗∗∗∗12 = 0

2. Tests of no volatility spillovers from food to energy prices

H02a: Food → energy: a21 = g21 = 0

H02b: Food → energy after the first breakpoint: a∗21 = g
∗

21 = 0

H02c: Food → energy after the second breakpoint: a∗∗21 = g
∗∗

21 = 0

H02d: Food → energy after the third breakpoint: a∗∗∗21 = g∗∗∗21 = 0

H02e: Food → energy after the fourth breakpoint: a∗∗∗∗21 = g∗∗∗∗21 = 0

3. Tests of no spillovers from energy to food prices

H03a: Energy → food: β21 = 0

5Descriptive statistics for the remaining three breaks are available on request. They show a similar pattern,

with higher energy and food price volatilities in the second subsample.
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H03b: Energy → food after the first breakpoint: β∗21 = 0

H03c: Energy → food after the second breakpoint: β∗∗21 = 0

H03d: Energy → food after the third breakpoint: β∗∗∗21
H03e: Energy → food after the fourth breakpoint: β∗∗∗∗21 = 0

4. Tests of no volatility spillovers from energy to food prices

H04a: Energy → food: a12 = g12 = 0

H04b: Energy → food after the first breakpoint: a∗12 = g
∗

12 = 0

H04c: Energy → food after the second breakpoint: a∗∗12 = g
∗∗

12 = 0

H04d: Energy → food after the third breakpoint: a∗∗∗12 = g∗∗∗12 = 0

H04e: Energy → food after the fourth breakpoint: a∗∗∗∗12 = g∗∗∗∗12 = 0

3.3 Empirical Results

We select the optimal lag length of the mean equation using the Schwarz Information Crite-

rion. The pairwise estimates of cross-market dependence in the conditional mean and variance

vary in magnitude and sign. Note that the sign of the cross-market volatilities cannot be

established. In order to test the adequacy of the models, Ljung—Box portmanteau tests were

performed on the standardised and squared residuals.

The exogenous variable to control for business cycle fluctuations is statistically significant,

indicating a positive US stock returns effect, as one would expect since this variable can be

iuterpreted as a proxy for financial market sentiment. The estimated volatility spillovers

between oil and food prices suggest strong linkages between food and energy markets. As for

the conditional variance equations, the estimated “own-market” coefficients are statistically

significant and the estimates of g11 suggest a high degree of persistence. The estimated

VAR-GARCH(1,1) model with associated robust p-values and likelihood function values are

presented in Tables 3 to 11. Overall, the results indicate that this specification captures

satisfactorily the persistence in returns and squared returns of all the series considered.

Please Insert Tables 3-11 and Figure 3-4 about here

Concerning the effect of energy on food, we observe the following. Return spillovers from

oil have a negative impact on coffee (β12 = −0.098) and on ethanol (−0.174), whilst the effect

is positive on sugar (0.203). Return spillovers from ethanol to wheat are also positive (0.038).

The food crisis had an impact on return spillovers from oil to corn (β∗12 = 0.174). The oil

bubble instead had an impact on spillovers from oil to ethanol (β∗∗12 = 0.149). The RFS policy

does not appear to have affected spillovers from oil to any of the food commodities considered,

with all β∗∗∗12 being not significantly different from zero, whereas the financial crisis had an

effect on spillovers from oil to sugar and ethanol.

Regarding the volatility spillovers from oil to food, the following can be noted. There is

evidence of such spillovers in the cases of coffee (α21 = 0.177), corn (α21 = −0.097), soybeans

(α21 = 0.098) and ethanol (α21 = 0.216). There are also significant volatility spillovers from

ethanol to cacao (α21 = 0.041). The food crisis affected only the dynamics between oil and

coffee. The oil turbulence period led to a reduction, in absolute value, in spillovers from oil

to coffee (α21+α
∗∗

21 = 0.177−0.189 = −0.012), and from oil to ethanol (−0.023), whereas the

effect on sugar was unchanged. The introduction of the RFS policy produced an increase in
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volatility spillovers from oil to coffee (α21+α
∗∗∗

21 = 0.359) and a decrease in those from oil to

corn (α21 + α
∗∗∗

21 = −0.005). Finally, the financial crisis had an effect on the spillovers from

oil to coffee (α21 + α
∗∗∗∗

21 = 0.270), corn (−0.009) and soybeans (0.235).

Moving on to the effects of food on energy price returns, the following is noteworthy.

Significant mean spillovers are found from corn (β21 = −0.022), soybeans (−0.015) and

sugar (0.078) to oil, and also from sugar to ethanol (β21 = −0.099). The food crisis had

a negative effect on mean spillovers from corn (β21 + β
∗

21 = −0.022 − 0.132 = −0.154) and

wheat (−0.207) to oil. The energy bubble increased spillovers in mean from wheat to oil

(β∗∗∗21 = 0.131). The 2008 financial crisis had a significant impact on the return spillover for

corn (β21 + β
∗∗∗∗

21 = −0.022 + 0.133 = 0.111), soybeans (0.061) and wheat (0.203). The RFS

policy only had an impact on the spillover from cacao to oil (β∗∗∗21 = 0.181) .

Regarding volatility spillovers from food to energy price returns, we find evidence of

spillovers only in the case of coffee and soybeans. The RFS policy had an impact on volatility

spillovers from coffee, corn and sugar towards oil, and corn prices and from soybeans to

ethanol prices. The financial crisis also had an impact on volatility spillovers from coffee and

corn to ethanol prices, and from corn to oil prices. 6

Finally, the conditional correlations (Figures 3 and 4) also suggest changes in the relation-

ship between energy and food prices, in particular after the financial crisis, which confirms

the importance of estimating a model allowing for breaks in the dynamic linkages between

food and energy prices. Overall, our results show that all four breaks considered affected

both mean and variance spillovers, the financial crisis having the most significant effects.

4 Conclusions

This paper has investigated the mean and volatility spillovers between energy (ethanol and

oil) and six selected food prices (cacao, coffee, corn, soybeans, sugar and wheat) by estimating

a VAR-GARCH model with a BEKK representation. Moreover, it has examined the possi-

ble effects of four recent events that might have resulted in shifts in the model parameters

by including dummy variables in both the conditional mean and variance equations. The

extensive dataset analysed, the focus on both first- and second- moment linkages and the

incorporation of structural breaks into the multivariate GARCH specification all represent

original contributions to the existing literature. Although the results are relatively mixed,

they confirm that food and energy prices are tightly interconnected and also provide clear

evidence that the recent turbulence in the world economy has significantly affected their

linkages. Both the RFS policy introduced in the US in 2005 and global shocks, such as the

food, oil and recent financial crisis appear to have had an impact on the dynamic interac-

tions between energy and food prices. Previous studies had not allowed for the possibility

of such parameter instabilities and had therefore overlooked a very important aspect of the

food-energy prices nexus, which raises questions about the reliability of their results. The

current study addresses directly this issue by modelling shifts in both mean and volatility

spillovers between food and energy prices, and hence provides more robust results which can

also be informative for policy-makers.

6Consistent patterns emerge from both the estimated conditional volatility cross- parameters (g21 and g12)

and the volatility spillover parameters (a21 and a12).
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Table 1: Descriptive Statistics

Oil Ethanol Cacao Coffee Corn Soya Sugar Wheat

Full sample 1/1/2003 - 6/6/2015

Mean 0.059 −0.013 0.045 0.067 −0.002 0.034 0.076 0.024

Max 23.714 19.482 8.173 10.801 11.509 6.713 10.288 11.682

Min −12.241 −18.922 −6.633 −9.644 −11.412 −15.414 −12.203 −20.225

St. Dev. 2.325 2.294 1.637 1.873 2.039 1.740 2.098 2.667

Skewness 0.717 −0.291 0.239 0.098 −0.070 −0.799 −0.205 −0.194

Kurtosis 12.232 12.961 5.033 6.294 5.587 9.121 5.932 6.889

J-Bera 8192 9342 409 1022 630 3756 822 1433

Obs. 2418 2418 2418 2418 2418 2418 2418 2418

Pre Food Crises 1/1/2003 - 12/31/2005

Mean 0.193 −0.056 0.047 0.049 −0.128 0.009 0.182 −0.004

Max 6.967 19.485 8.168 10.676 6.983 6.340 7.632 8.644

Min −7.428 −18.926 −6.078 −8.395 −4.981 −15.419 −8.836 −6.625

St. Dev. 2.114 2.986 1.782 2.398 1.614 2.143 2.088 2.122

Skewness −0.040 −0.625 0.304 −0.027 −0.049 −1.341 −0.077 0.164

Kurtosis 3.703 14.701 4.325 4.288 3.905 11.642 4.703 4.518

J-Bera 8012 2412 371 287 146 1425 509 428

Obs. 583 583 583 583 583 583 583 583

Post Food Crises 1/1/2006 - 6/6/2015

Mean 0.029 −0.003 0.045 0.071 0.027 0.040 0.052 0.030

Max 23.712 11.391 8.033 10.803 11.505 6.716 10.293 11.681

Min −12.252 −12.972 −6.630 −9.642 −11.414 −11.965 −12.201 −20.223

St. Dev. 2.370 2.105 1.603 1.732 2.124 1.634 2.101 2.777

Skewness 0.846 −0.043 0.217 0.175 −0.088 −0.488 −0.233 −0.230

Kurtosis 13.423 8.881 5.227 6.997 5.546 6.524 6.201 6.857

J-Bera 8523 2645 394 1227 495 1023 800 1151

Obs. 1835 1835 1835 1835 1835 1835 1835 1835

Note: Descriptive statistics for the whole sample 1/1/2003-6/6/2015, pre-food crisis 1/1/2003-31/12/2005,

and post-food crisis sample 1/1/2006-6/6/2015.
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Table 2: Sample Correlations

Oil Ethanol Stock Cacao Coffee Corn Soybeans Sugar Wheat

Pre Food Crises 1/1/2003 - 31/12/2005,

Oil -

Ethanol 0.056
(0.18)

-

Stock −0.180
(0.00)

0.025
(0.54)

-

Cacao 0.114
(0.01)

−0.066
(0.11)

0.046
(0.27)

-

Coffee 0.039
(0.35)

−0.020
(0.64)

−0.065
(0.12)

0.050
(0.23)

-

Corn 0.158
(0.00)

−0.017
(0.69)

0.064
(0.12)

0.423
(0.00)

0.031
(0.46)

-

Soybeans 0.115
(0.01)

−0.075
(0.07)

0.035
(0.39)

0.642
(0.00)

0.025
(0.54)

0.496
(0.00)

-

Sugar 0.045
(0.28)

0.001
(0.98)

−0.040
(0.34)

0.064
(0.12)

0.046
(0.26)

−0.067
(0.11)

0.016
(0.70)

-

Wheat 0.077
(0.07)

−0.041
(0.33)

−0.008
(0.84)

0.284
(0.00)

0.031
(0.46)

0.394
(0.00)

0.278
(0.00)

0.106
(0.01)

-

Post Food Crises 1/1/2006- 6/6/2015

Oil -

Ethanol 0.021
(0.30)

-

Stock 0.213
(0.00)

−0.013
(0.52)

-

Cacao 0.385
(0.00)

−0.038
(0.06)

0.197
(0.00)

-

Coffee 0.061
(0.00)

−0.004
(0.86)

−0.026
(0.20)

0.059
(0.00)

-

Corn 0.261
(0.00)

0.004
(0.84)

0.125
(0.00)

0.454
(0.00)

0.022
(0.27)

-

Soybeans 0.277
(0.00)

−0.022
(0.28)

0.120
(0.00)

0.667
(0.00)

0.023
(0.25)

0.535
(0.00)

-

Sugar 0.206
(0.00)

−0.033
(0.10)

0.127
(0.00)

0.183
(0.00)

0.072
(0.00)

0.172
(0.00)

0.163
(0.00)

-

Wheat 0.204
(0.00)

−0.011
(0.58)

0.097
(0.00)

0.352
(0.00)

0.010
(0.61)

0.498
(0.00)

0.362
(0.00)

0.169
(0.00)

-
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Table 3: Summary Results for Oil

Oil => Cacao Coffee Corn Soybeans Sugar Wheat Ethanol

β12 − + −

β∗12 +

β∗∗12 +

β∗∗∗12
β∗∗∗∗12 − +

a21 x x x x

a∗21 x

a∗∗21 x x x

a∗∗∗21 x x

a∗∗∗∗21 x x x

g21 x x x x x x

g∗21 x x x

g∗∗21 x x x x x

g∗∗∗21 x x x x

g∗∗∗∗21 x x x x

Oil.<= Cacao Coffee Corn Soybeans Sugar Wheat Ethanol

β21 − − +

β∗21 − −

β∗∗21 + −

β∗∗∗21 +

β∗∗∗∗21 + + +

a12 x x

a∗12 x x

a∗∗12 x

a∗∗∗12 x x x x

a∗∗∗∗12 x

g12 x x x

g∗12 x x x x x

g∗∗12 x x

g∗∗∗12 x x x

g∗∗∗∗12 x x
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Table 4: Summary Results for Ethanol

Eth.=> Cacao Coffee Corn Soybeans Sugar Wheat Oil

β12 +

β∗12
β∗∗12 −

β∗∗∗12 −

β∗∗∗∗12

a21 x

a∗21 x x x

a∗∗21 x x x

a∗∗∗21 x x x x

a∗∗∗∗21 x

g21 x x

g∗21 x x x

g∗∗21 x x

g∗∗∗21 x x

g∗∗∗∗21 x x

Eth.<= Cacao Coffee Corn Soybeans Sugar Wheat Oil

β21 − −

β∗21 +

β∗∗21 + +

β∗∗∗21
β∗∗∗∗21 + +

a12 x x

a∗12 x x

a∗∗12 x x

a∗∗∗12 x x

a∗∗∗∗12 x x

g12 x x x x

g∗12 x x

g∗∗12 x x x

g∗∗∗12 x x x

g∗∗∗∗12 x x x
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TABLE 5: Estimated VAR-GARCH(1,1) model, Oil-Cacao and Ethanol-Cacao

Oil=>Cacao Eth.=>Cacao Cacao.=>Oil Cacao.=>Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.027 (0.473) −0.003 (0.943) α2 0.028 (0.391) 0.034 (0.323)

β11 −0.004 (0.790) 0.105 (0.000) β22 −0.020 (0.374) 0.006 (0.664)

β12 0.024 (0.432) −0.020 (0.427) β21 0.025 (0.120) −0.051 (0.442)

β∗12 0.035 (0.738) 0.138 (0.080) β∗21 −0.085 (0.252) −0.057 (0.280)

β∗∗12 −0.044 (0.500) −0.041 (0.423) β∗∗21 −0.011 (0.848) 0.057 (0.399)

β∗∗∗12 0.015 (0.892) −0.216 (0.005) β∗∗∗21 0.181 (0.011) 0.082 (0.157)

β∗∗∗∗12 −0.016 (0.837) 0.106 (0.063) β∗∗∗∗21 −0.020 (0.654) 0.025 (0.725)

γ1 0.064 (0.008) −0.011 (0.734) γ2 0.078 (0.000) 0.093 (0.000)

Conditional Variance

c11 0.501 (0.000) 0.294 (0.000) c22 0.000 (0.999) 0.146 (0.000)

c12 0.000 (0.999) −0.031 (0.379)

a11 0.174 (0.000) 0.908 (0.000) a22 0.229 (0.000) −0.198 (0.000)

a21 −0.052 (0.231) 0.041 (0.005) a12 0.014 (0.441) 0.015 (0.753)

a∗21 −0.017 (0.783) 0.043 (0.168) a∗12 0.102 (0.226) −0.106 (0.016)

a∗∗21 0.058 (0.241) −0.042 (0.044) a∗∗12 −0.191 (0.042) 0.014 (0.769)

a∗∗∗21 −0.044 (0.605) −0.077 (0.018) a∗∗∗12 0.047 (0.576) 0.093 (0.106)

a∗∗∗∗21 0.120 (0.200) 0.013 (0.582) a∗∗∗∗12 −0.062 (0.457) 0.000 (0.992)

g11 0.978 (0.000) 0.410 (0.000) g22 0.912 (0.000) −0.198 (0.000)

g21 0.227 (0.000) 0.045 (0.044) g12 −0.140 (0.000) −0.071 (0.003)

g∗21 −0.067 (0.527) 0.157 (0.162) g∗12 0.102 (0.226) 0.016 (0.462)

g∗∗21 −0.106 (0.314) −0.072 (0.276) g∗∗12 0.064 (0.420) 0.053 (0.016)

g∗∗∗21 −0.114 (0.027) −0.267 (0.015) g∗∗∗12 0.056 (0.064) 0.001 (0.978)

g∗∗∗∗21 −0.006 (0.915) 0.130 (0.082) g∗∗∗∗12 0.003 (0.937) 0.054 (0.007)

Log-lik −19053.91 −10954.14

QOil(10) 5.815 Arch(10)Oil 3.689

Q2Oil(10) 11.982 Arch(10)Cacao 2.329

QEth.(10) 7.576 Arch(10)Ethanol 0.753

Q2Eth.(10) 13.312

QCacao(10) 10.337 16.423

Q2Cacao(10) 12.334 13.491

Note: Standard errors (S.E.) are calculated using the quasi-maximum likelihood method of Bollerslev and

Wooldridge (1992), which is robust to the distribution of the underlying residuals. Parameters not statistically

significant at the 5% level are not reported. Q(10) and Q2(10) are, respectively, the Ljung-Box test (1978) of

significance of autocorrelations of ten lags in the standardized and standardized squared residuals. Parameters

β21 and a12 measure the causality effect of oil (ethanol) on food commodities,. and the causality in variance

effect, respectively The effects of the 1/1/2006, 20/3/2004, 6/6/2008 and 15/8/2004 crises are measured
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by (β12 + β
∗

12) , (β12 + β
∗∗

12) , (β12 + β
∗∗∗

12 ) and (β12 + β
∗∗∗∗

12 ) , respectively. The same applies to the

effects on food volatilities. The covariance stationary condition is satisfied by all the estimated models, all the

eigenvalues of A11⊗A11+G11⊗G11 being less than one in modulus. Note that in the conditional variance

equation, the sign of the parameters is not relevant. Numbers are rounded to the third decimal.
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TABLE 6: Estimated VAR-GARCH(1,1) model, Oil-Coffee and Ethanol-Coffee

Oil => Coffee Eth. => Coffee Coffee => Oil Coffee => Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.026 (0.494) −0.002 (0.948) α2 0.040 (0.245) 0.038 (0.382)

β11 −0.048 (0.037) 0.117 (0.000) β22 0.025 (0.109) 0.025 (0.123)

β12 −0.098 (0.025) −0.018 (0.336) β21 0.113 (0.055) −0.125 (0.162)

β∗12 −0.168 (0.074) 0.014 (0.879) β∗21 0.035 (0.550) −0.006 (0.879)

β∗∗12 0.127 (0.052) −0.021 (0.608) β∗∗21 −0.013 (0.843) 0.116 (0.183)

β∗∗∗12 0.154 (0.110) 0.033 (0.691) β∗∗∗21 −0.083 (0.103) 0.083 (0.108)

β∗∗∗∗12 0.129 (0.114) −0.043 (0.440) β∗∗∗∗21 0.006 (0.932) 0.029 (0.697)

γ1 0.063 (0.107) −0.018 (0.534) γ2 0.108 (0.000) 0.159 (0.000)

Conditional Variance

c11 0.003 (0.000) 0.329 (0.000) c22 0.994 (0.000) 0.000 (1.000)

c12 −0.001 (0.000) −0.135 (0.000)

a11 0.232 (0.000) 0.412 (0.000) a22 0.260 (0.000) −0.123 (0.000)

a21 0.177 (0.000) 0.013 (0.434) a12 −0.203 (0.049) 0.152 (0.000)

a∗21 −0.038 (0.002) 0.035 (0.804) a∗12 −0.014 (0.899) 0.047 (0.177)

a∗∗21 −0.189 (0.019) 0.023 (0.682) a∗∗12 0.153 (0.110) −0.122 (0.000)

a∗∗∗21 0.182 (0.000) −0.194 (0.102) a∗∗∗12 0.197 (0.021) −0.026 (0.539)

a∗∗∗∗21 0.093 (0.000) 0.227 (0.002) a∗∗∗∗12 0.047 (0.690) −0.148 (0.001)

g11 0.964 (0.000) 0.903 (0.000) g22 0.757 (0.000) 0.989 (0.000)

g21 −0.116 (0.000) 0.005 (0.240) g12 0.397 (0.000) −0.027 (0.222)

g∗21 −0.038 (0.002) 0.067 (0.001) g∗12 −0.347 (0.000) −0.021 (0.191)

g∗∗21 −0.189 (0.019) −0.002 (0.848) g∗∗12 −0.055 (0.234) 0.016 (0.444)

g∗∗∗21 0.182 (0.000) −0.039 (0.071) g∗∗∗12 0.002 (0.972) −0.008 (0.738)

g∗∗∗∗21 −0.275 (0.000) −0.021 (0.290) g∗∗∗∗12 −0.050 (0.294) 0.056 (0.002)

Log-lik −11183.76 −10907.15

QOil(10) 4.791 Arch(10)Oil 1.067

Q2Oil(10) 12.852 Arch(10)Coffee 2.402

QEth.(10) 16.495 Arch(10)Ethanol 1.001

Q2Eth.(10) 16.126

QCoffee(10) 11.755 9.769

Q2Coffee(10) 11.572 9.981

Note: See notes Table 5.
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TABLE 7: Estimated VAR-GARCH(1,1) model, Oil-Corn and Ethanol-Corn

Oil => Corn Eth. => Corn Corn => Oil Corn => Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.025 (0.498) −0.077 (0.036) α2 0.017 (0.536) 0.006 (0.873)

β11 −0.011 (0.375) 0.102 (0.000) β22 0.001 (0.958) −0.002 (0.922)

β12 0.026 (0.363) −0.007 (0.776) β21 −0.022 (0.005) −0.094 (0.188)

β∗12 0.174 (0.043) −0.094 (0.183) β∗21 −0.132 (0.015) −0.158 (0.058)

β∗∗12 −0.092 (0.072) −0.020 (0.689) β∗∗21 −0.021 (0.302) 0.059 (0.449)

β∗∗∗12 −0.060 (0.437) 0.098 (0.115) β∗∗∗21 0.039 (0.650) 0.196 (0.067)

β∗∗∗∗12 −0.039 (0.389) −0.009 (0.874) β∗∗∗∗21 0.133 (0.005) 0.063 (0.454)

γ1 0.055 (0.042) 0.005 (0.858) γ2 0.034 (0.085) 0.018 (0.536)

Conditional Variance

c11 0.143 (0.053) 0.181 (0.000) c22 0.323 (0.000) 0.155 (0.262)

c12 −0.038 (0.105) 0.051 (0.733)

a11 0.184 (0.000) 0.384 (0.000) a22 0.226 (0.000) −0.119 (0.022)

a21 −0.097 (0.001) −0.007 (0.779) a12 0.002 (0.812) 0.055 (0.276)

a∗21 −0.017 (0.633) −0.271 (0.000) a∗12 −0.002 (0.964) 0.131 (0.002)

a∗∗21 0.008 (0.840) 0.146 (0.024) a∗∗12 0.038 (0.151) −0.044 (0.350)

a∗∗∗21 0.092 (0.023) 0.217 (0.000) a∗∗∗12 0.128 (0.000) −0.294 (0.001)

a∗∗∗∗21 0.088 (0.036) 0.134 (0.070) a∗∗∗∗12 −0.157 (0.000) 0.090 (0.042)

g11 0.979 (0.000) 0.920 (0.000) g22 0.953 (0.000) 0.988 (0.000)

g21 0.039 (0.003) −0.002 (0.885) g12 −0.004 (0.221) −0.031 (0.003)

g∗21 −0.075 (0.000) −0.019 (0.376) g∗12 0.050 (0.000) −0.031 (0.003)

g∗∗21 −0.024 (0.061) 0.011 (0.161) g∗∗12 0.006 (0.464) 0.007 (0.773)

g∗∗∗21 −0.047 (0.103) 0.000 (0.994) g∗∗∗12 0.128 (0.000) 0.137 (0.000)

g∗∗∗∗21 0.090 (0.000) 0.030 (0.004) g∗∗∗∗12 −0.157 (0.000) −0.084 (0.315)

Log-lik −21004.99 −19578.51

QOil(10) 5.058 Arch(10)Oil 2.345

Q2Oil(10) 7.482 Arch(10)Corn 1.595

QEth.(10) 16.412 Arch(10)Ethanol 1.445

Q2Eth.(10) 12.735

QCorn(10) 8.377 3.801

Q2Corn(10) 14.969 16.464

Note: See notes Table 5.
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TABLE 8: Estimated VAR-GARCH(1,1) model, Oil-Soybeans and Ethanol-Soybeans

Oil => Soy. Eth. => Soy. Soy. => Oil Soy. => Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.026 (0.468) −0.018 (0.597) α2 0.013 (0.590) 0.025 (0.491)

β11 −0.008 (0.506) 0.119 (0.000) β22 −0.033 (0.002) −0.041 (0.019)

β12 −0.005 (0.846) −0.009 (0.802) β21 −0.015 (0.042) −0.009 (0.892)

β∗12 0.156 (0.079) −0.057 (0.542) β∗21 −0.053 (0.178) 0.142 (0.012)

β∗∗12 −0.015 (0.665) 0.018 (0.754) β∗∗21 0.032 (0.322) −0.095 (0.164)

β∗∗∗12 −0.090 (0.308) −0.098 (0.263) β∗∗∗21 −0.055 (0.248) −0.028 (0.607)

β∗∗∗∗12 −0.042 (0.368) 0.129 (0.080) β∗∗∗∗21 0.076 (0.029) −0.105 (0.155)

γ1 0.031 (0.241) −0.007 (0.816) γ2 0.056 (0.000) 0.121 (0.000)

Conditional Variance

c11 0.147 (0.000) 0.164 (0.000) c22 0.197 (0.056) 0.000 (1.000)

c12 0.173 (0.064) −0.922 (0.000)

a11 0.191 (0.000) 0.402 (0.000) a22 0.229 (0.000) 0.327 (0.000)

a21 0.098 (0.022) 0.037 (0.394) a12 0.002 (0.807) −0.060 (0.408)

a∗21 −0.162 (0.102) 0.360 (0.028) a∗12 −0.031 (0.503) 0.074 (0.328)

a∗∗21 −0.020 (0.689) −0.145 (0.170) a∗∗12 0.039 (0.352) 0.055 (0.496)

a∗∗∗21 0.044 (0.686) −0.185 (0.059) a∗∗∗12 −0.054 (0.395) −0.127 (0.030)

a∗∗∗∗21 0.137 (0.048) −0.358 (0.000) a∗∗∗∗12 0.012 (0.830) 0.118 (0.249)

g11 0.980 (0.000) 0.909 (0.000) g22 0.956 (0.000) 0.733 (0.000)

g21 −0.044 (0.001) 0.144 (0.000) g12 0.002 (0.471) −0.181 (0.000)

g∗21 0.148 (0.000) −0.343 (0.001) g∗12 −0.098 (0.000) 0.315 (0.000)

g∗∗21 −0.079 (0.000) 0.251 (0.000) g∗∗12 0.087 (0.000) −0.186 (0.001)

g∗∗∗21 −0.022 (0.285) −0.185 (0.059) g∗∗∗12 0.016 (0.300) 0.181 (0.000)

g∗∗∗∗21 −0.038 (0.112) 0.540 (0.000) g∗∗∗∗12 0.004 (0.619) −0.324 (0.000)

Log-lik −18387.88 −10577.43

QOil(10) 4.146 Arch(10)Oil 2.169

Q2Oil(10) 15.611 Arch(10)Soya 1.138

QEth.(10) 13.462 Arch(10)Ethanol 0.917

Q2Eth.(10) 5.837

QSoya(10) 5.981 3.356

Q2Soya(10) 5.799 2.117

Note: See notes Table 5.
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TABLE 9: Estimated VAR-GARCH(1,1) model, Oil-Sugar and Ethanol-Sugar

Oil =>Sugar Eth.=>Sugar Sugar=>Oil Sugar=>Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.049 (0.297) −0.083 (0.024) α2 0.005 (0.903) 0.002 (0.958)

β11 −0.057 (0.001) 0.084 (0.000) β22 −0.046 (0.076) −0.078 (0.000)

β12 0.203 (0.000) 0.001 (0.948) β21 0.078 (0.035) −0.099 (0.000)

β∗12 −0.067 (0.260) −0.107 (0.135) β∗21 0.012 (0.863) 0.016 (0.563)

β∗∗12 −0.068 (0.314) 0.022 (0.598) β∗∗21 −0.028 (0.542) 0.079 (0.005)

β∗∗∗12 −0.004 (0.950) 0.098 (0.123) β∗∗∗21 −0.093 (0.126) −0.013 (0.717)

β∗∗∗∗12 −0.155 (0.043) 0.007 (0.864) β∗∗∗∗21 0.003 (0.944) 0.100 (0.025)

γ1 0.063 (0.070) −0.008 (0.766) γ2 0.046 (0.085) 0.059 (0.033)

Conditional Variance

c11 0.160 (0.000) 0.307 (0.000) c22 0.000 (0.999) 0.062 (0.595)

c12 0.194 (0.000) 0.092 (0.182)

a11 0.189 (0.000) 0.440 (0.000) a22 0.218 (0.000) 0.157 (0.000)

a21 −0.075 (0.191) 0.021 (0.195) a12 0.058 (0.126) −0.010 (0.914)

a∗21 0.028 (0.491) −0.228 (0.071) a∗12 0.178 (0.010) −0.018 (0.725)

a∗∗21 0.149 (0.022) −0.013 (0.911) a∗∗12 −0.109 (0.065) −0.026 (0.757)

a∗∗∗21 −0.032 (0.430) 0.265 (0.000) a∗∗∗12 −0.183 (0.000) −0.048 (0.423)

a∗∗∗∗21 0.020 (0.778) −0.030 (0.741) a∗∗∗∗12 −0.075 (0.175) 0.076 (0.356)

g11 −0.981 (0.000) 0.892 (0.000) g22 0.974 (0.000) 0.157 (0.000)

g21 0.315 (0.000) −0.015 (0.176) g12 0.058 (0.126) −0.010 (0.914)

g∗21 0.035 (0.607) 0.008 (0.770) g∗12 0.178 (0.010) −0.018 (0.725)

g∗∗21 −0.245 (0.000) 0.002 (0.951) g∗∗12 −0.109 (0.065) −0.026 (0.757)

g∗∗∗21 0.172 (0.000) −0.003 (0.892) g∗∗∗12 −0.183 (0.000) −0.048 (0.423)

g∗∗∗∗21 −0.501 (0.000) 0.002 (0.936) g∗∗∗∗12 −0.075 (0.175) 0.076 (0.356)

Log-lik −11727.36 −9589.11

QOil(10) 4.520 Arch(10)Oil 1.127

Q2Oil(10) 11.610 Arch(10)Sugar 1.564

QEth.(10) 14.077 Arch(10)Ethanol 0.625

Q2Eth.(10) 6.710

QSugar(10) 9.430 8.370

Q2Sugar(10) 9.150 10.863

Note: See notes Table 5.
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TABLE 10: Estimated VAR-GARCH(1,1) model, Oil-Wheat and Ethanol-Wheat

Oil => Wheat Eth. => Wheat Wheat => Oil Wheat => Eth.

Conditional Mean

Coef. p-value Coef. p-value Coef. p-value Coef. p-value

α1 0.013 (0.759) 0.001 (0.986) α2 −0.012 (0.802) −0.021 (0.689)

β11 −0.053 (0.004) 0.100 (0.000) β22 −0.037 (0.098) −0.038 (0.043)

β12 −0.060 (0.174) 0.038 (0.005) β21 −0.009 (0.843) −0.016 (0.843)

β∗12 −0.030 (0.660) −0.063 (0.542) β∗21 −0.207 (0.017) −0.098 (0.073)

β∗∗12 0.063 (0.304) −0.035 (0.239) β∗∗21 0.131 (0.048) 0.017 (0.840)

β∗∗∗12 0.035 (0.571) 0.069 (0.492) β∗∗∗21 −0.067 (0.470) −0.016 (0.777)

β∗∗∗∗12 0.022 (0.718) −0.046 (0.160) β∗∗∗∗21 0.203 (0.020) 0.107 (0.211)

γ1 0.085 (0.024) −0.037 (0.253) γ2 0.026 (0.551) −0.033 (0.489)

Conditional Variance

c11 0.054 (0.266) 0.336 (0.000) c22 0.000 (0.999) 0.317 (0.000)

c12 0.378 (0.000) −0.110 (0.082)

a11 0.179 (0.000) 0.416 (0.000) a22 0.268 (0.000) 0.241 (0.000)

a21 −0.064 (0.235) 0.001 (0.965) a12 0.033 (0.031) 0.058 (0.330)

a∗21 0.021 (0.680) −0.225 (0.087) a∗12 0.021 (0.493) 0.061 (0.381)

a∗∗21 0.061 (0.397) 0.105 (0.002) a∗∗12 −0.122 (0.000) −0.054 (0.408)

a∗∗∗21 0.035 (0.223) 0.167 (0.177) a∗∗∗12 0.124 (0.000) −0.218 (0.074)

a∗∗∗∗21 0.062 (0.453) 0.027 (0.470) a∗∗∗∗12 −0.176 (0.000) 0.076 (0.618)

g11 0.983 (0.000) 0.901 (0.000) g22 0.950 (0.000) 0.960 (0.000)

g21 −0.014 (0.275) 0.023 (0.060) g12 0.033 (0.031) −0.099 (0.078)

g∗21 −0.028 (0.052) 0.071 (0.031) g∗12 0.021 (0.000) −0.067 (0.067)

g∗∗21 0.098 (0.000) −0.033 (0.020) g∗∗12 −0.122 (0.000) 0.095 (0.087)

g∗∗∗21 −0.091 (0.000) −0.078 (0.012) g∗∗∗12 0.124 (0.000) 0.164 (0.001)

g∗∗∗∗21 0.110 (0.000) 0.000 (0.994) g∗∗∗∗12 −0.176 (0.000) 0.010 (0.886)

Log-lik −21004.99 −22147.92

QOil(10) 4.831 Arch(10)Oil 0.863

Q2Oil(10) 7.334 Arch(10)Wheat 1.646

QEth.(10) 17.063 Arch(10)Ethanol 0.287

Q2Eth.(10) 2.514

QWheat.(10) 6.081 6.426

Q2Wheat.(10) 12.230 14.891

Note: See notes Table 5.
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TABLE 11: Estimated VAR-GARCH(1,1) model,Ethanol .-Oil

Eth.=> Oil Oil => Eth.

Conditional Mean

Coef. p-value Coef. p-value

α1 −0.092 (0.009) α2 0.037 (0.473)

β11 0.091 (0.000) β22 −0.066 (0.000)

β12 0.003 (0.796) β21 −0.174 (0.010)

β∗12 −0.011 (0.912) β∗21 0.055 (0.422)

β∗∗12 −0.062 (0.012) β∗∗21 0.149 (0.025)

β∗∗∗12 0.044 (0.653) β∗∗∗21 0.002 (0.986)

β∗∗∗∗12 −0.023 (0.375) β∗∗∗∗21 0.180 (0.000)

γ1 −0.004 (0.888) γ2 0.041 (0.236)

Conditional Variance

c11 0.283 (0.000) c22 0.135 (0.001)

c12 −0.014 (0.849)

a11 0.435 (0.000) a22 0.175 (0.000)

a21 0.003 (0.854) a12 0.216 (0.000)

a∗21 0.280 (0.013) a∗12 −0.023 (0.627)

a∗∗21 −0.068 (0.242) a∗∗12 −0.194 (0.003)

a∗∗∗21 −0.228 (0.040) a∗∗∗12 −0.160 (0.063)

a∗∗∗∗21 0.003 (0.922) a∗∗∗∗12 −0.040 (0.622)

g11 0.895 (0.000) g22 0.982 (0.000)

g21 0.008 (0.301) g12 −0.105 (0.000)

g∗21 −0.044 (0.299) g∗12 0.024 (0.244)

g∗∗21 0.007 (0.649) g∗∗12 0.091 (0.000)

g∗∗∗21 0.040 (0.381) g∗∗∗12 0.026 (0.557)

g∗∗∗∗21 −0.011 (0.340) g∗∗∗∗12 0.059 (0.107)

Log-lik −9982.98

QOil(10) 6.901 Arch(10)Oil 1.781

Q2Oil(10) 15.743 Arch(10)Ethanol 0.721

QEth.(10) 16.092

Q2Eth.(10) 6.468

Note: See notes Table 5.
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Figure 1: Spot Prices
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Figure 2: Spot Price Returns
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Figure 3: Conditional Correlations
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Figure 4: Conditional Correlations
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