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Abstract 

The study proposes an alternative modelling specification for the real prices of gold and silver 

that allows the long run trend and cyclical behaviour to be modelled simultaneously by 

incorporating two differencing parameter in a fractional integration framework.  However, we 

also consider the separate cases of a standard I(d) process, with a pole or singularity at the 

zero frequency and a cyclical I(d) model that incorporates a single pole in the spectrum at a 

non-zero frequency.  We use annual data spanning from 1833 to 2013for gold and 1792 to 

2013 for silver. Based on the more flexible model that permits a pole at both zero (trend) and 

non-zero (cycle) frequencies, we find that in general the estimates associated to the long run 

or zero frequency appear to be above 1 in case of gold and below 1 for silver, while the order 

of integration associated with the cyclical frequency is slightly above 0 in the majority of the 

cases in the two series. Further, higher orders of integration are associated to the long run 

component compared with the cyclical one. The implications of these findings are 

highlighted. 
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1. Introduction 

Commodity prices are generally known to be very volatile leading to uncertainty over future 

revenue and cost streams. This consequently inhibits planning, deters investment and hence 

acts as a drag on future growth and poverty reduction prospects. The recent global economic 

and financial crisis which led to significant increase in commodity prices between 2003 and 

2008 has renewed interest in modelling commodity price behaviour. The real prices of energy 

and metals more than doubled in five years from 2003 to 2008, while the real price of food 

commodities increased by 75% (Erten and Ocampo, 2013).  When the global economic 

growth slowed down, this led to diminishing demand pressures on commodity prices. 

However, commodity prices have started to recover very fast, and this has been attributed to 

the rapid growth of the emerging markets and dramatic increase in worldwide demand for 

commodities.  

Given the swings in prices, the need to model the trend and cycle behaviour of metal 

prices in general and gold and silver prices in particular cannot be overstressed. They are 

important for both the producing and consumer countries and for both the private and 

government. For the producing countries especially in developing countries, export earnings 

from metals are often the main source of revenue for many governments. The revenues may 

either come from direct ownership of resource extraction companies or the tax revenues and 

royalties obtained from private firms.  For the consumer countries, they are a key input factor 

in many industries and hence drastic price increases can affect these industries negatively 

through higher input costs.   

Further, precious metals are considered as leading indicators of inflation or as a 

variable which can transmit the outlook of monetary policy to the economy. In other words, 

the pro-cyclical character of the demand for precious metals has underlined their roles as safe-

havens against inflation and stores of value and may provide important information as to 
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where the real economy is heading (Baur and Lucey, 2010; Gil-Alana et al., 2015). Thus, 

precious metals offer valuable diversification opportunities to investors and serve as monetary 

medium when the market is uncertain (Batten et al., 2010; Arouri et al., 2012; Harvey et al., 

2012). Precious metals in general but gold and silver in particular have multiple industrial and 

investment uses. They can be used as storage of value, reserve for money issuance, anti-

inflation shelter and financial instrument among others ( Baur and Mcdermott, 2010; Shafiee 

and Topal, 2010).  

Overall, the dynamics of gold and silver prices have implications for investment 

decisions, profitable capacity expansion and economic planning. Fluctuations in these prices 

may have a major impact on overall macroeconomic performance and living standards in 

these countries, hence justifying the need to understand their trend and cycles. Thus, the 

presence work displays a new modelling framework for trends and cycles incorporating 

different degrees of persistence at each component by means of fractional differentiation. In 

other words, the main objective of the paper is to present a new time series modeling for gold 

and silver  prices taking simultaneously into account the main two features of the data which 

are its dependence and its cyclicity.    

 A number of studies have modelled the trend and cycle features of commodity prices 

using methods which range from informal graphical inspection of the data to rigorous 

statistical decomposition techniques and recently to fractional integration. Focussing on this 

latter approach, the results are mixed. For instance Arouri et al (2012) used several parametric 

and semiparametric methods including ARFIMA- FIGARCH model and found strong 

evidence of long memory in the daily conditional return and volatility processes of four 

precious metals: gold, silver, platinum and palladium. Uludag and Lkhamazhapov (2014) 

used a similar approach as Arouri et al (2012), and found evidence of anti-persistence in spot 

returns and a lack of long memory property in gold futures returns. They concluded that long 
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memory is a true feature of the data and not due to structural breaks. Gil-Alana et al. (2015) 

analysed the persistence properties of five metal prices- gold, silver, platinum, palladium, and 

rhodium- within a fractional integration framework while accounting for structural breaks. In 

general they find evidence of long memory behaviour and hence strong dependence across 

time in the precious metals examined. 

From a cyclical viewpoint, Cuddington and Jerrett (2008) use band-pass (BP) filters to 

search for evidence of super cycles in price of six base metals traded in London Metal 

Exchange (LME) - aluminum, copper, lead, nickel, tin, and zinc. They find considerable 

evidence of three past super cycles in real metal prices, defined as cyclical components with 

expansion phases from 10 to 35 years. They also show that the amplitude of the super cycles 

is large with variations of 20 to 40% above and below the long-run trends.  

Harvey et al. (2012) disentangle trend and cyclical components for relative commodity 

prices using new and ultra-long aggregate commodity prices, covering the period 1650- 2010. 

Employing quasi-feasible GLS-based testing approach, it is shown that the trend path of the 

commodity series can be split into four regimes (i.e. 1650 to the early 1820s, the early 1820s 

to the early 1870s, the early 1870s to the mid-1940s, and the mid-1940s to 2010). Moreover, 

using BP filter, they find that long-run cycles (often called super-cycles) last for 

approximately twenty seven years, but appear to be increasing in periodicity over the 20th 

century, whereas shorter-run cycles last for approximately four years but appear to be 

decreasing in periodicity. 

Rossen (2014) explores the dynamics (co-movement, price cycles and long-run trends) 

of monthly twenty metal prices including gold and silver during January 1910 and December 

2011. Results based on the asymmetric band-pass (BP) filter show that price cycles are 

asymmetric; the number of cycles varies significantly depending on the specific metal under 

consideration, the majority of the metal price series can be characterized by four super cycles 



6 
 

consistent with previous studies. However, there is no evidence of duration dependence and 

the long-run component of metal prices considerably varies over the set of mineral 

commodities.  

In this paper we propose an alternative modelling specification for the real prices of 

gold and silver. Classical methods include the trend stationary I(0) and the nostationary unit 

roots (I(1)) models. However, during the last twenty years fractional integration has become 

an alternative plausible way of modelling many economic time series. The I(d, d > 0) 

specification imposes the existence of a pole or singularity in the spectrum at the zero 

frequency, which is usually associated with the long run trend behaviour.  However, as earlier 

mentioned, another inherent feature observed in many series, including gold and silver prices, 

is the existence of a cyclical pattern that in many times is reduced to the short run dynamics 

and incorporated throughout a simple AR(2) process with complex roots. In this paper, we 

incorporate cycles in the long run dynamics by means of allowing for the existence of another 

pole in the spectrum at a non-zero frequency. Thus, we consider three different specifications: 

a) a standard I(d) process, with a pole or singularity at the zero frequency; b) a cyclical I(d) 

model that incorporates a single pole in the spectrum at a non-zero frequency, and c) a general 

model that incorporates the two features in a single framework and that includes two poles in 

the spectrum of the series. Therefore, this latter model incorporates two fractional 

differencing parameters, one at the long run or zero frequency and another one at a non-zero 

(cyclical) frequency. To the best of our knowledge, this is the first attempt to model trend and 

cyclical properties of long-span gold and silver prices simultaneously in a fractional 

integration framework.   

The outline of the paper is as follows: Section 2 describes the models employed in the 

paper and the methodology used. Section 3 presents the data and the main empirical results, 

while Section 4 concludes the paper. 
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2. The models 

Assuming that {ut, t = 0, ±1, ...} is a covariance stationary I(0) process, three models are 

examined in this work.  

 

a) The standard I(d) model 

It is specified as: 

,...,1,0t,ux)L1( tt
d ±==−    (1) 

where d can be any real value, L is the lag-operator (Lxt = xt-1) and ut is I(0), defined for our 

purposes as a covariance stationary process with a spectral density function that is positive 

and finite at any frequency in the spectrum. 

The I(d) model of the form given by equation (1) was introduced by Granger (1980, 

1981), Granger and Joyeux (1980) and Hosking (1981) and since then it has been widely 

employed to describe the behaviour of many economic time series. Note that the parameter d 

plays a crucial role in describing the degree of dependence (long run persistence) of the series. 

Specifically, if d = 0 in (1), xt = ut, and the series is I(0), potentially including ARMA 

structures with the autocorrelations decaying at an exponential rate. If d belongs to the 

interval (0, 0.5), the series is still covariance stationary but the autocorrelations take longer to 

disappear than in the I(0) case. If d is in the interval [0.5, 1), the series is no longer covariance 

stationary; however, it is still mean-reverting with shocks affecting it disappearing in the long 

run. Finally, if d ≥  1 the series is nonstationary and non-mean-reverting. 

 There exist many methods for estimating and testing d in equation (1). Some of them 

are parametric while others are semiparametric and they can be specified in the time or in the 

frequency domain. In this paper we use a parametric method that uses the Whittle function in 

the frequency domain (Dahlhaus, 1989) along with a Lagrange Multiplier (LM) test proposed 
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by Robinson (1994) and that it has been used in numerous empirical applications (Gil-Alana 

and Robinson, 1997; Gil-Alana, 2000; Gil-Alana and Henry, 2003; etc.) . 

 

b) The cyclical I(d) model 

This specification is based on the Gegenbauer process, and it is defined as: 

,...,2,1,)cos21( 2 ==+− tuxLLw tt
d

r   (2)  

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 2πr/T, 

with r = T/s, and thus s will indicate the number of time periods per cycle, while r refers to the 

frequency that has a pole or singularity in the spectrum of xt. Note that if r = 0 (or s = 1), the 

fractional polynomial in (2) becomes (1 – L)2d, which is the polynomial associated with the 

previous case of fractional integration at the long-run or zero frequency. This type of process 

was introduced by Andel (1986) and subsequently analysed by Gray, Zhang and Woodward 

(1989, 1994), Giraitis and Leipus (1995), Chung (1996a,b), Gil-Alana (2001) and Dalla and 

Hidalgo (2005) among others. It can be shown that denoting μ = coswr, for all d ≠  0, 

,)()21(
0

,
2 j

j
dj

d LCLL µµ ∑=+−
∞

=

−    

where )(, µdjC  are orthogonal Gegenbauer polynomial coefficients recursively defined as:  
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
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
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+

−
−








+

−
= −− jC
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j
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Gray et al. (1989) showed that xt in (2) is (covariance) stationary if d < 0.5 for │μ = coswr│< 

1 and if d <0.25 for│μ│= 1.The existence of a pole at a non-zero frequency indicates that the 

series displays a cyclical pattern. 

 Here, we will employ first a testing parametric method of Dalla and Hidalgo (2005). It 

tests the null hypothesis of no cycles against the alternative of strong cycles of form as in (2). 
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Additionally, we will employ the methods of Giraitis et al. (2001) and Hidalgo (2005), testing 

both r and d in equation (2) in a parametric and a semiparametric way respectively. 

 

c) A model with two poles at the spectrum 

The third model combines the two previous approaches in a single framework. Thus, the 

model examined is the following: 

,...,2,1t,ux)LLwcos21()L1( tt
d2

r
d 21 ==+−−  (3) 

where d1 is the order of integration corresponding to the long-run or zero frequency, and d2 is 

the order of integration with respect to the non-zero (cyclical) frequency, and ut is assumed 

once more to be an I(0) process. As in the previous cases, d1 and d2 are allowed to be real 

values and thus they are not restricted to be integers.  

Dealing with the model in equation (3), Robinson (1994) proposes a Lagrange 

Multiplier (LM) test, testing the null hypothesis: 

,),(),(: 2121 o
T

oo
T

o ddddddH ≡=≡   (4) 

in (3), for real values do, where T means transposition, and xt are the regression errors in a 

model of form: 

,...,2,1t,xzy tt
T

t =+β=     (5) 

whereyt is the observed time series; β is a (kx1) vector of unknown parameters, and zt is a 

(kx1) vector of deterministic terms, that might include, for example, an intercept (i.e. zt = 1) 

or an intercept with a linear trend (zt = (1,t)T). The specific form of the test statistic (denoted 

by R̂ ) is presented in the Appendix. Under very general regularity conditions, Robinson 

(1994) showed that for this particular version of his tests, 

,Tas,R̂ d ∞→→ 2
2χ    (6) 
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where T indicates the sample size, and “→d” stands for convergence in distribution. Thus, 

unlike in other procedures, we are in a classical large-sample testing situation. A test of (5) 

will reject Ho against the alternative Ha: d ≠ do if R̂ > 2
,2 αχ , where Prob ( 2

2χ > 2
,2 αχ ) = α. There 

are several reasons for using this approach. First, this test is the most efficient in the Pitman 

sense against local departures from the null, that is, if it is implemented against local 

departures of the form: Ha: d = do + δT-1/2, for δ ≠ 0, the limit distribution is a ),(2
2 vχ  with a 

non-centrality parameter v that is optimal under Gaussianity of ut. Moreover, Gaussianity is 

not necessary for the implementation of this procedure, a moment condition of only order 2 

being required.   

 

3. Data and empirical results 

The data examined correspond to the annual data for real prices of gold (1833 – 2013) and 

silver (1792 – 2013) in natural logarithmic form, with the start and end points of the samples 

purely driven by data availability at the time of writing this paper. The data on nominal prices 

(London PM Fix US dollar per ounce) for gold and silver is obtained from www.kitco.com, 

while the annual Consumer Price Index (CPI) data used to deflate the nominal prices to obtain 

the real values of gold and silver prices, are derived from the website of Professor Robert Sahr 

(http://oregonstate.edu/cla/polisci/sahr/sahr). Figure 1 displays the time series plots (in logs) 

along with their first differences. It can be observed that gold price appear to have longer 

price swings than silver price. Silver price rather looks more volatile. Both exhibit two large 

spikes around the 1980s and 2013 suggesting possibility of structural breaks in the series. The 

first differenced data display some heteroscedastic behaviour but the methods employed in 

this paper for estimating and testing the differencing parameters seem to be robust to this 

feature. 

[Insert Figures 1 – 3 about here] 

http://oregonstate.edu/cla/polisci/sahr/sahr
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 The correlograms and the periodograms of the series and the first differenced data are 

displayed in Figures 2 and 3 respectively. The correlograms show a cyclical pattern that is 

clearer observed for the gold real prices. The periodograms of the original data show the 

highest value at the zero frequency while those of the first differenced data display the highest 

values at a non-zero frequency. 

 In order to accommodate deterministic terms, we suppose that zt in (5) is equal to (1, 

t)T, such that 

,...2,1,t,txt10ty =++= ββ    (7) 

and we start presenting the results for the standard case of I(d) models. Table 1 displays the 

estimates of d (and the 95% confidence interval) for the three standard cases of no regressors 

(i.e., β0 = β1 = 0 a priori in (7)), an intercept (β0 unknown and β1 = 0 a priori), and an intercept 

with a linear time trend (β0 and β1 unknown), assuming that ut is a white noise process, an 

AR(1) and that it follows the model of Bloomfield, which is a non-parametric approach of 

modelling the I(0) error term.1 

[Insert Table 1 about here] 

 Starting with the deterministic terms, the first thing we note is that an intercept seems 

to be sufficient to describe the deterministic part of the model. Focussing first on the gold 

prices, we see that if ut is white noise, the estimated value of d is 1.32, and the unit root null 

hypothesis is rejected in favour of higher orders of integration, however, allowing for 

autocorrelated disturbances, the estimated ds are below 1, and the unit root is almost rejected. 

Looking at the silver log-prices, the three estimates of d are below 1, the unit root cannot be 

rejected with white noise errors, and this hypothesis is decisively rejected in favour of mean 

reversion (d < 1) with autocorrelated errors. 

                                                 
1 This nonparametric approach of Bloomfield (1973) accommodates very well in the context of fractional 
integration (Velasco and Robinson, 2000; Gil-Alana, 2004; etc.) 
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 Next we focus on strong cycles and consider the model given by equation (2). Here 

first we perform the Dalla and Hidalgo’s (2005) method and the results reject the null 

hypothesis of no cycles in the two series in favour of cyclical long range dependence. 

Estimating the location for the pole or singularity at the spectrum with the semiparametric 

method of Hidalgo (2005), the estimates range in the two series between 4 and 9 periods 

depending on the choice of the bandwidth number. Tables 2a and 2b displays the estimates of 

d in (2) for r = 4, 5, 6, 7 and 8, again for the three cases of no regressors, an intercept, and an 

intercept with a linear trend. Table 2a refers to the case of white noise disturbances, while 

Table 2b focuses on autocorrelated AR(1) errors. 

[Insert Tables 2a and 2b about here] 

 As with the previous model, the most significant results are those based on an 

intercept but with no linear trend.  Generally the estimates of d are positive in the two series 

though more evidence of significant positive values of d is found in the gold real prices data. 

Employing the exponential spectral model of Bloomfield (1973) for the I(0) error term ut in 

(2) produced estimates of d fairly similar to those reported in Table 2b for the case of AR(1) 

errors. 

 Finally, we employ model (3), which is a more flexible specification than (1) and (2) 

in the sense that it allows us to jointly estimated the fractional differencing parameters 

corresponding to the zero and non-zero frequencies. Table 3a refers to the case of white noise 

errors, while Tables 3b and 3c displays the estimates for the cases of AR(1) and Bloomfield-

type disturbances. Focussing on the case with an intercept and starting with Table 3a (white 

noise) we see that for gold, d1 is above 1 in all cases ranging from 1.15 (r = 7, 8) to 1.30 (r = 

5), while d2 is slightly above 0.2 for 4 values of r and close to 0 if r = 4. Looking at the results 

for silver in the same table, d1 is slightly below 1 and d2 is slightly above 0 for the five values 

presented for r. 
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[Insert Tables 3a, 3b and 3c about here] 

 Table 3b refers to AR(1) disturbances. For gold, the estimates of d ranges between 

0.53 (r = 5) and 0.89 (r = 6, 7), while d2 is equal to 0.03 with r = 4 and it ranges between 0.12 

and 0.17 in the remaining cases. For silver, d1 oscillates between 0.55 (r = 8) and 0.68 (r = 4), 

while d2 is very close to 0. Using the exponential spectral model of Bloomfield (1973) (in 

Table 3c) the estimates are very close to those based on white noise disturbances. Thus, for 

gold d1 is above 1 and d2 above 0, and for silver, the estimates of d1 are slightly below 1 while 

those of d2 are slightly above 0. The fact that the orders of integration following this third 

specification are all significantly positive in case of d1, but also in the majority of the cases for 

d2 suggests that this specification is preferred over (1) and (2) since these two models are 

particular cases of (3) with d1 = 0 and d2 = 0 respectively. A more difficult task is to 

determine which form is the most adequate one for the I(0) disturbance term. Using LR tests 

and several diagnostic tests on the residuals the results were a bit ambiguous, however, we 

came to the conclusion that the non-parametric approach of Bloomfield (1973) accommodates 

well for the two series under study. Thus, we can conclude by saying that higher orders of 

integration are associated to the long run component compared with the cyclical one. Thus, 

the estimates associated to the long run or zero frequency seem to be above 1 in case of gold 

and below 1 for silver, while the order of integration associated with the cyclical frequency is 

slightly above 0 in the majority of the cases in the two series. 

 

4. Conclusions 

The study proposes an alternative modelling specification for the real prices of gold and 

silver. We use annual data covering the period 1883-2013.  We consider both the long run 

trend behaviour and the cycle patterns in these two series within a fractional integration 

framework.  We incorporate cycles in the long run dynamics by means of allowing the 
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existence of an additional pole in the spectrum at a non-zero frequency. In other words, the 

model incorporates two fractional differencing parameters, one at the long run or zero 

frequency and another one at a non-zero (cyclical) frequency. This is an extension to the 

conventional fractional integration model that imposes the existence of a unique pole or 

singularity in the spectrum at the zero frequency, usually associated with the long run trend 

behaviour.  However, we also consider the separate cases of a standard I(d) process, with a 

pole or singularity at the zero frequency and a cyclical I(d) model that incorporates a single 

pole in the spectrum at a non-zero frequency.  We consider the estimates of the differencing 

parameter for the three standard cases of no regressors, an intercept, and an intercept with a 

linear time trend, and assuming that the residual is a white noise process, an AR(1) and that it 

follows the model of Bloomfield. The most significant specification is that with intercept 

only.  

Results based on the standard I(d) process shows that real gold price is non-mean 

reverting while real silver price is mean reverting. In other words we find evidence of long 

memory behaviour in the gold price inflation rate but not in the silver inflation rate. Based on 

the cyclical I(d) model,  the null hypothesis of no cycles in the two series is rejected in favour 

of cyclical long range dependence and the location for the pole or singularity at the spectrum 

in the two series is estimated to be between 4 and 9 periods depending on the number of the 

bandwidth parameter chosen.  Finally, results from the more flexible model indicates that in 

general the estimates associated to the long run or zero frequency appear to be above 1 in case 

of gold and below 1 for silver, while the order of integration associated with the cyclical 

frequency is slightly above 0 in the majority of the cases in the two series. Further, higher 

orders of integration are associated to the long run component compared with the cyclical one.  

These results have important implications for policy. For instance in the event of 

exogenous shocks, the effects will be permanent in gold and strong policy measures need to 
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be adopted to ensure that gold price returns to its original trend. The persistent property in 

gold and the cyclical long range dependence property in both gold and silver is important for 

monetary policy especially with respect to inflation targeting since these properties are likely 

to affect the persistence nature of the aggregate inflation of an economy. This will have 

implications for economic variables such as interest rates, consumption, investment, and 

output growth. More so, the findings have implications for portfolio diversification, 

forecasting of gold and silver prices and overall economic planning. 

At this stage, it is important to point out that, since we use long span data, gold and 

and silver prices are likely to have witnessed structural breaks. And as indicated by Diebold 

and Inoue (2001), presence of structural breaks can lead to spurious evidence in favour of 

long-memory. In light of this, we carried out a similar analysis to the one performed in 

Section 3 by allowing for potential breaks and outliers, and modelled throughout dummy 

variables incorporated in the regression model (5). Though it produced some small differences 

in the magnitudes of the differencing parameters, qualitatively the results were very similar to 

those reproduced in the paper, with higher orders of integration at the long run or zero 

frequency compared with the cyclical one, and also higher degrees of persistence in gold 

compared with silver. Future research should be aimed at re-estimating these models by 

allowing for non-linearities, which may be conducted for instance by means of the Chebyshev 

polynomials in time. 
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (4) in the model given by  

equations (3) and (5) is given by: 
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Note that these tests are purely parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. Thus, if ut is white noise, gu ≡ 1, and 
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if ut is an AR process of the form φ(L)ut = εt, gu = |φ(eiλ)|-2, with σ2 = V(εt), so that the AR 

coefficients are a function of τ. 

 The point estimates were obtained by choosing the values that minimise Robinson’s 

(1994) test statistic over a grid of values for d1, d2 and r. These parameter estimates were 

practically identical to those obtained by maximising the Whittle function in the frequency 

domain (Dahlhaus, 1989). The confidence intervals were obtained by choosing the values of 

the differencing parameters where the null hypotheses tested could not be rejected at the 5% 

level. 
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TABLES AND FIGURES 
 
 
Figure 1: Log of real gold and silver prices and their first differences  
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Figure 2: Correlograms of log of real gold and silver prices and their first differences 
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The thick lines give the 95% confidence band for the null hypothesis of no autocorrelation. 
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Figure 3: Periodograms of log of real gold and silver prices and their first differences  
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The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
 
 
 
 
 



24 
 

 
Table 1: Estimates of d in an I(d) model at the zero frequency (Model (1)) 

i) Log of real gold prices 

ut (disturbances) No regressors An intercept A linear time trend 

White noise 1.00   (0.92,   1.10) 1.32   (1.17,   1.56) 1.33   (1.17,   1.56) 

AR (1) 1.29   (1.13,   1.50) 0.78   (0.57,   0.99) 0.42   (0.16,   0.91) 

Bloomfield (1) 1.01   (0.86,   1.21) 0.77   (0.59,   1.00) 0.76  (0.59,   
1 00) ii)         Log of real silver prices 

ut (disturbances) No regressors An intercept A linear time trend 

White noise 0.94   (0.87,   1.04) 0.92   (0.82,   1.05) 0.92   (0.82,   1.05) 

AR (1) xxx 0.71   (0.56,   0.88) 0.70   (0.49,   0.88) 

Bloomfield (1) 0.93   (0.81,   1.07) 0.72   (0.60,   0.88) 0.71   (0.57,   0.88) 
In bold, the significant models according to the deterministic terms. 
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Table 2a: Estimates of d in a cyclical I(d) model (Model (2)) 

ii) Log of real gold prices 

White noise ut No regressors An intercept A linear time trend 

r   =  4    -0.098  (-0.198,  0.040) -0.097  (-0.197,  0.041) -0.092  (-0.193,  0.050) 

r   =  5    0.233  (0.063,  0.460) 0.233  (0.063,  0.460) 0.239  (0.069,  0.466) 

r   =  6    0.318  (0.195,  0.467) 0.318  (0.195,  0.466) 0.318  (0.196,  0.465) 

r   =  7    0.314  (0.207,  0.438) 0.313  (0.207,  0.438) 0.312  (0.206,  0.435) 

r   =  8    0.296  (0.191,  0.413) 0.296  (0.191,  0.412) 0.293  (0.189,  0.409) 

ii)          Log of real silver prices   

White noise ut No regressors An intercept A linear time trend 

r   =  4    0.092  (-0.018,  0.243) 0.091  (-0.019,  0.243) 0.093  (-0.018,  0.245) 

r   =  5    0.125  (0.035,  0.233) 0.125  (0.035,  0.233) 0.126  (0.036,  0.234) 

r   =  6    0.099  (0.028,  0.182) 0.099  (0.028,  0.182) 0.099  (0.028,  0.182) 

r   =  7    0.040  (-0.041,  0.131) 0.040  (-0.041,  0.132) 0.040  (-0.041,  0.132) 

r   =  8    0.007  (-0.073,  0.098) 0.007  (-0.074,  0.098) 0.006  (-0.074,  0.097) 

In bold, the significant models according to the deterministic terms. 
 
 
 
Table 2b: Estimates of d in a cyclical I(d) model (Model (2)) 

i) Log of real gold prices  

AR(1)-type ut No regressors An intercept A linear time trend 

r   =  4    0.065  (-0.067,  0.254) 0.066  (-0.066,  0.256) 0.066  (-0.066,  0.257) 

r   =  5    0.117  (-0.002,  0.274) 0.117  (-0.001,  0.275) 0.120  (0.001,  0.280) 

r   =  6    0.142  (0.048,  0.262) 0.142  (0.049,  0.263) 0.146  (0.053,  0.268) 

r   =  7    0.146  (0.054,  0.271) 0.146  (0.053,  0.270) 0.151  (0.057,  0.277) 

r   =  8    0.111  (0.012,  0.239) 0.110  (0.012,  0.238) 0.115  (0.017,  0.245) 

ii)          Log of real silver prices   

AR(1)-type ut No regressors An intercept A linear time trend 

r   =  4    0.091  (-0.019,  0.242) 0.091  (-0.018,  0.242) 0.093  (-0.018,  0.244) 

r   =  5    0.155  (0.042,  0.303) 0.155  (0.042,  0.303) 0.158  (0.044,  0.307) 

r   =  6    0.159  (0.057,  0.289) 0.159  (0.057,  0.289) 0.162  (0.059,  0.291) 

r   =  7    0.047  (-0.066,  0.195) 0.048  (-0.065,  0.195) 0.049  (-0.063,  0.197) 

r   =  8    -0.039  (-0.142,  0.088) -0.039  (-0.142,  0.089) -0.038  (-0.142,  0.089) 

In bold, the significant models according to the deterministic terms. 
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Table 3a: Estimates of d1 and d2 in a long run + cyclical I(d) model (Model (3)) 

i) Log of real gold prices  

White noise ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    1.04 0.74 1.27 -0.06 1.27 -0.06 

r   =  5    1.02 0.91 1.30 0.23 1.30 0.23 

r   =  6    1.00 0.91 1.21 0.25 1.21 0.25 

r   =  7    0.99 0.90 1.15 0.25 1.15 0.25 

r   =  8    1.00 0.88 1.15 0.22 1.15 0.22 

ii)         Log of real silver prices   

White noise ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.93 0.07 0.93 0.06 0.93 0.06 

r   =  5    0.90 0.17 0.90 0.14 0.90 0.14 

r   =  6    0.87 0.16 0.86 0.14 0.86 0.14 

r   =  7    0.85 0.13 0.85 0.10 0.85 0.10 

r   =  8    0.86 0.08 0.84 0.08 0.84 0.08 
In bold, the significant models according to the deterministic terms. 
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Table 3b: Estimates of d1 and d2 in a long run + cyclical I(d) model (Model (3)) 

ii) Log of real gold prices  

AR-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.86 -0.02 0.72 0.03 0.71 0.03 

r   =  5    1.25 0.05 0.53 0.17 0.52 0.18 

r   =  6    1.25 0.05 0.89 0.15 0.89 0.15 

r   =  7    1.25 0.08 0.89 0.15 0.86 0.14 

r   =  8    0.90 0.19 0.76 0.12 0.76 0.12 

ii)          Log of real silver prices   

AR.-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.68 0.01 0.68 0.01 0.57 0.01 

r   =  5    0.73 0.06 0.61 0.05 0.61 0.05 

r   =  6    0.72 0.06 0.62 0.05 0.62 0.05 

r   =  7    0.69 -0.02 0.57 -0.02 0.54 -0.02 

r   =  8    0.69 -0.07 0.55 -0.06 0.54 -0.06 
In bold, the significant models according to the deterministic terms. 
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Table 3c: Estimates of d1 and d2 in a long run + cyclical I(d) model (Model (3)) 

iii) Log of real gold prices  

Bloomfield-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    1.34 0.05 1.34 0.05 1.34 0.05 

r   =  5    1.29 0.03 1.30 0.03 1.30 0.03 

r   =  6    1.21 0.25 1.21 0.25 1.21 0.25 

r   =  7    1.14 0.25 1.15 0.25 1.15 0.25 

r   =  8    1.11 0.24 1.11 0.24 1.11 0.24 

ii)         Log of real silver prices   

Bloomfield.-type ut No regressors An intercept A linear time trend 

 d1 d2 d1 d2 d1 d2 

r   =  4    0.95 0.05 0.92 0.05 0.92 0.05 

r   =  5    0.90 0.14 0.90 0.14 0.90 0.14 

r   =  6    0.86 0.14 0.86 0.14 0.86 0.14 

r   =  7    0.85 0.10 0.85 0.10 0.85 0.10 

r   =  8    0.85 0.08 0.84 0.08 0.84 0.08 
In bold, the significant models according to the deterministic terms. 
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