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1.  Introduction 

After more than three decades of rapid development since 1978, China is nowadays 

experiencing very severe air pollution, especially where there is accelerating 

urbanization in (Zheng et al., 2015). Due to the concern regarding health effects 

caused by the deteriorating air quality, China's air pollution has become a hot topic for 

both the public and scholars (Matus et al., 2012; Chen et al., 2013; Shi et al., 2014; 

Feng and Liao, 2016). At present, there is little disagreement that air pollution poses a 

major environmental risk to human health (Tanaka, 2015; Guo et al., 2016). Moreover, 

the poor air quality also undermines the long-term sustainable development of China 

(Liu et al., 2015; Zheng et al., 2015). According to the estimation of the World Bank, 

the annual economic loss caused by air pollution could approach as much as 1.2% of 

China’s GDP (Zheng et al., 2015). The degraded air quality also plays a very 

significant role in causing a significant amount of immigrants to flee China. However, 

how to effectively reduce the air pollutants remains an important question yet to be 

answered. 

During recent years, sharply increasing empirical research on China also 

verifies the conclusion on the detrimental health effects of air pollution (Almond et al., 

2009; Chen et al., 2013; Tanaka, 2015). However, the existing literature rarely pays 

attention to the persistence of the air pollution (Liu et al., 2015), namely the time 

characteristics of air pollution, which will shed light on the persistence of air pollution 
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and the differences between the different regions of China. Meanwhile, a strong 

understanding of the persistence will also provide important policy implications for 

the government authorities with regard to regulation on the emission of pollutants. 

Depending on the degree of persistence, including mean reverting, unit roots and long 

memory, different policy measures may also be adopted, and this degree of 

persistence is determined by the model associated to the data (Smyth, 2013; Barros et 

al., 2016). This is the second important motivation of our paper. To investigate the 

persistence of air pollutant emission in the four mega-cities of China, we adopt the 

innovative fractional integration and autoregressive models to analyze the time series 

during the period from 2013 to 2015. With allowing for fractional values, a much 

richer degree of flexibility in the dynamic specification of these series will be 

displayed. 

Despite air pollution being a great threat to human health as well as to long-term 

development, most previous research focuses solely on certain kinds of pollution, 

such as particulate matter 2.5 (PM 2.5) or sulfur dioxide (SO2), without differentiating 

the different kinds of air pollutants and making a systematic analysis on all of them. 

Furthermore, it also ignores that the dynamics of different kinds of air pollutants 

varies both over time and from region to region. As the air pollution levels are 

determined by the concentrations of a complex mixture of air pollutants, SO2, NO2, 

CO, O3, PM2.5 and particulate matter 10 (PM10) are defined as the six criteria 

pollutants around the world in quantifying air pollution levels. In this paper, we will 

fill the gap in the existing literature and examine these different air pollutants in 
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different regions of China, respectively1. 

The remainder of the paper is organized as follows: Section 2 introduces the 

background of China’s air pollution in four different mega-cities in China. Section 3 

presents the literature review, followed by Section 4 that introduces the methodology 

and models. Section 5 displays the data and empirical results and Section 6 concludes. 

 

2. Contextual setting of China’s Air Pollution 

2.1  The air pollution in China 

According to the National Bureau of Statistics of China (www.stats.gov.cn), the 

energy consumed by the whole country amounted to the equivalent of 3.84 billion 

tons of coal in 2014, which is as much as 6.74 times of the total energy consumption 

in China in 1978. Meanwhile, coal consumption reached 2.47 billion tons in 2014, 

which is about 6.11 times the volume of coal consumption in 1978. As China has 

always relied on traditional fossil fuel energy in the last three decades, it produces 

plenty of byproducts of "economic miracles", which are regarded as the major 

anthropogenic contributors to air pollution in China (Chan and Yao, 2008; Chen et al., 

2013). 

Although the government had promulgated the Environmental Protection Law 

as early as 1979 (more details can be seen in Feng and Liao (2016)), the legislation 

for air pollution in China has significant defects (Zhang and Wen, 2008; Wang and 

Hao, 2012; Feng and Liao, 2016), especially in the context of a slowdown of 

                                                             
1 As the data on O3 is unavailable, we have not make analysis on it. 
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economic growth. Recently, as the serious haze pollution began to blanket many 

Chinese cities in 2013, the government announced an unprecedentedly more 

restrictive standard on pollutant limits, which had previously been revised twice 

before in 1995 and 2000 (i.e. GB3095-1995, GB3095-2000), in order to prevent and 

control air pollution in China (See Table 1). Moreover, comparing to the former 

standards in 2000, the new Chinese National Standards for Ambient Air Quality also 

brought the pollutant PM2.5 into its scope. This is also much higher than the air 

quality standard in the Europe and United States (Wang and Hao, 2012). 

 

[Insert Table 1 about here] 

 

   Despite there being an established system of legislation, plans and policies on 

air pollution in China which has played a significantly important role in controlling 

air quality (Wang and Hao, 2008; Feng and Liao, 2016), the air pollutants emission, 

including the SO2, Soot and NOx (Nitrogen oxides), remain at a high level, resisting 

any significant decline following several years of regulation (See Figure 1).  

 

[Insert Figures 1 and 2 about here] 

 

Moreover, Soot emissions have sharply increased since 2010, which may 

explain why severe smog has consistently occurred in many cities of China. 

Meanwhile, compared to other countries in the world, China's mean annual exposure 
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to PM 2.5 has been much higher since 1990 (See Figure 2), increasing to more than 

50 mg/m3 since 2010 and is well above the historical level. 

 

 

2.2  The development of four mega-cities in China 

As is well known, Beijing, Shanghai, Guangzhou and Shenzhen are the top notable 

mega-cities in China (See Figure 3). They not only play the role of  the engine of 

economic growth in China, but also have a much larger population than other cities. 

The GDP of Beijing, Shanghai, Guangzhou and Shenzhen reached 3.72 trillion Yuan 

in 2014, which is about 58.48% of the GDP of the whole country. Meanwhile, their 

total population was 69.64 billion in 2014. All these four cities rank among the top 30 

largest cities in the world. 

 

[Insert Figure 3 about here] 

 

Because there are more job opportunities in mega-cities, and the average wage 

is also much higher than other small cities or rural areas (Harris and Todaro, 1970), 

many people have been pouring into the big cities like Beijing, Shanghai, Guangzhou 

and Shenzhen since 1978 when population migration across regions began to be 

allowed by the government. Nowadays, all these four mega-cities are very crowded 

and full of motor vehicles. For these reasons, these mega-cities are centers of human 

activities, and pollutants emissions congest there. Therefore, the air quality of these 
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mega-cities is becoming very poor due to the side effects of agglomeration (Wang et 

al., 2010). 

 

 

 

3.  Literature Survey 

The examination of the dynamic behavior of the air pollutant emissions could be 

useful to obtain additional information to assist in policy decision making (Barros et 

al., 2014). To this end a large number of studies on the persistence of air pollution 

have emerged in recent decades (Raga and Le Moyne, 1996; Anh and Azzi, 1997; 

Windsor and Toumi, 2001; Weng et al., 2008). Meanwhile, as the time series may be 

affected by the non-stationarities, trends and nonlinearities, which can lead to biased 

estimations, many innovative methods have been developed to consider these 

potential characteristics and improve upon the traditional models (Meraz et al., 2015). 

For example, Windsor and Toumi (2001) use three methods to study the statistical 

characteristics of UK hourly observations of ozone, PM10 and PM2.5 with Sigma-T, 

Hurst rescaled range and kurtosis. Meraz et al. (2015) adopt the rescaled range 

analysis (R/S) to investigate the statistical persistence of air pollutants in Mexico City, 

including the time series of hourly observations of ozone, nitrogen dioxide, sulfur 

dioxide and particulate matter obtained at the Mexico City downtown monitoring 

station from 1999-2014. Some authors argue that the detrended fluctuation analysis 

(DFA) presents some advantages compared to the R/S method that allows for the 
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identification of long-term correlations in the seemingly nonstationary time series as 

well as spurious long-term correlations embodied in an artifact of nonstationary 

(Matsoukas et al., 2000; Kantelhardt et al., 2001; Lu and Xue., 2014). Therefore, the 

DFA method has become very popular among scholars, for example, Varotsos et al. 

(2005) utilize it to detect the Athens air-pollution time-series of ozone, nitrogen 

oxides and particulate matter obtained from 1987-2003. Chelani (2012, 2013) also 

applies this method to the air pollutant concentration in Delhi. 

Much relevant research discusses the air pollution in other cities around the 

world. Meanwhile, there is a relatively large strand of the literature that focuses on air 

pollution within China and its influences on human health, but the existing research 

pays little attention to the persistence features of air pollution. Kai et al. (2008) 

examine the daily air pollution indices of PM10, NO2 and SO2 data of Shanghai using 

three different techniques including R/S, DFA and spectral analysis, to detect the 

persistence and scaling. Liu et al. (2015) uses the DFA and multifractal method to 

characterize the temporal fluctuations of the three pollution indices (SO2, NO2 and 

PM10) and the daily air pollution indices of Shanghai in China. Lu and Xue (2014) 

and Shi (2014) also applied the DFA to analyze the particulate matter from vehicle 

emissions at a typical traffic intersection in Hong Kong. 

In contrast to the methods mentioned above which were applied to analyze the 

persistence or long memory of air pollution, fractional integration, which has been 

widely used in applied econometrics and permits us to examine the time series 

properties and its disaggregate components from a very general perspective, including 
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trend I(0) stationarity, unit roots and fractional integration in a unified treatment 

(Barros et al., 2016), has not been used to investigate the air pollution (Gil-Alaña and 

Robinson, 1997, 2001; Gil-Alana, 2003; Cuñado et al., 2005; Barros et al., 2016). 

 

 

4. Methodology 

The methodology used in the paper is based on the concept of long memory or long 

range dependence characterized by the spectral density function being unbounded at a 

given frequency (usually 0) or alternatively, expressed in the time domain, because 

the infinite sum of the auto covariances is infinite. A special case of long memory is 

the type of fractionally integrated or I(d) processes. These processes indicate that the 

number of differences required to render a series stationary I(0) may be a fractional 

value d and this parameter is very relevant, not only because it allows a greater degree 

of flexibility in the dynamic specification of the series but also because it indicates if 

a shock in the series is going to be transitory or permanent. Formalizing it in a 

mathematical way, we say that a time series is said to be integrated of order d if, 

      (1 – L)d xt =  ut,  t = 1, 2, …,     (1) 

with xt = 0, t ≤ 0, where ut is an I(0) process, defined as a covariance stationary 

process with spectral density function that is positive and finite, and L is the backward 

shift operator (Lxt = xt-1). In the case of fractional d, the polynomial in the left hand 

side in (1) can be expanded in terms of its Binomial expansion, such that, for all real 

d: 
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In this context, d plays a crucial role as an indicator of the degree of dependence 

in the series. Thus, the higher the value of d is, the higher the level of association is 

between the observations.  Processes with d > 0 in (1) display the property of “long 

memory”, so-named because of the strong degree of association between observations 

distant in time. These processes are also characterised by autocorrelations decaying 

hyperbolically at a slow rate and with a spectral density function unbounded at the 

origin. If d = 0, the series is integrated of order 0, I(0). If 0 < d < 0.5, the series is long 

memory and stationary, if d ≥ 0.5, the series is then nonstationary and if d = 1 the 

series is integrated of order 1 or I(1). It is important to note that if the time series is I(d) 

with d < 1, the series is “mean reverting”, in the sense that shocks affecting the series 

will disappear in the long run.1 On the contrary, if the series is I(d) with d ≥ 1 it is not 

mean reverting and shocks could eventually remain in the series forever. 

 Several methods exist for estimating and testing the fractional differencing 

parameter d. Some are parametric while others are semiparametric and they can be 

specified in the time or in the frequency domain. In this paper, we use a parametric 

frequency domain Whittle estimation approach (Dahlhaus, 1989) along with a testing 

procedure (Robinson, 1994), which is based on the Lagrange Multiplier (LM) 

                                                             
1  Some authors, e.g., Phillips and Xiao (1999) argue that in the case of d in the interval [0.5, 1) 
the concept of mean reversion is a misnomer given the nonstationary nature of the process. 
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principle and that also uses the Whittle function in the frequency domain.2 

 

 

 

5. Data and Empirical Results 

The data is obtained from the website: www.tianqihoubao.com/aqi. This provides the 

air quality data of different cities in China every day, including SO2, NO2, CO, O3, 

PM 2.5 and PM 10. As China began to disclose the monitoring data of PM 2.5 in late 

2013, the selected sample period in this paper is from September 28 of 2013 to 

December 12 of 2015. The summary statistics of original time series are displayed in 

Table 2. Moreover, as the air pollution is much more serious in large cities compared 

to other smaller cities due to the higher population density and agglomeration of 

economic activities, we selected the four mega cities, i.e. Beijing, Shanghai, 

Guangzhou and Shenzhen, as the sample cities in this research. 

 

[Insert Table 2 about here] 

 

   We start the empirical analysis by considering the following model: 

yt  =  α  +   βt   +   xt,      (1 – L)dxt   =  ut,   (2) 

where yt  is the observed time series, α and β are coefficients referring respectively to 

the intercept and a linear time trend; L is the lag-operator (Lxt = xt-1); d is the 

                                                             
2  Robinson’s (1994) method has the advantage that is still valid in the context of nonstationary 
(d ≥ 0.5) processes. 
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fractional differencing parameter, and ut is I(0) as previously defined. 

In Table 3, we assume that the I(0) ut errors are white noise, while in Table 4 we 

allow for some degree of autocorrelation by means of using an AR(1) process.3 In 

both cases we consider the three standard cases of no regressors (α and β are assumed 

to be 0 a priori in (2)); an intercept (α is unknown and β is set equal to 0); and an 

intercept with a linear time trend (i.e., with the two parameter taken as unknown). 

 

[Insert Table 3 about here] 

 

The first thing that we observe is that in all cases an intercept seems to be 

sufficient to describe the deterministic components of the series. In fact, though not 

reported, the time trend coefficient (β) was found to be statistically insignificant in all 

cases presented. We report in the tables the estimated values of d along with their 

corresponding 95% confidence bands. 

For the case of white noise errors (in Table 3) we observe that the estimated 

values of d range between 0.42 (Shanghai in case of PM 2.5) to 0.71 (Shenzhen, with 

PM 10 and PM 2.5) though in all cases the unit root null hypothesis (i.e. d = 1) is 

rejected in favour of fractional integration. 

 

[Insert Table 4 about here] 

 
                                                             
3 The AR(1) model is chosen because of its simplicity and its relation with the stochastic first 
order differential equation. 



 13 

Allowing autocorrelated errors (through an AR(1) process) the values are much 

smaller, and all are within the stationary region, ranging from 0.09 (Beijing, PM 10) 

and 0.45 (Shenzhen with CO).  Thus, the values are smaller than those reported in 

Table 3 though still significantly different from 0 and 1. 

 

6. Concluding comments 

This paper analyses the persistence of pollution in China in four mega-cities from 

September 28 of 2013 to December 12 of 2015. The unit roots and fractional 

integration hypotheses are tested first with noise disturbances and then using AR(1) 

disturbances. The results reveal fractional integration with orders of integration 

substantially different from zero and one and thus showing persistence in air pollution 

in the four different mega-cities of China. The fact that the orders of integration are 

below 1 indicates that the pollution shocks will disappear by themselves in the long 

run and converge to an average value over time, albeit taking a very long time to 

recover. Therefore, the pollution will continue unless counter measures to control it 

are adopted. Unlike other research on China, this paper finds evidence that the air 

pollution in the four mega-cities of China has not worsened in the last three years. 

Moreover, for different cities and different air pollutants, different policy measure 

should be adopted as the degree of persistence identified is distinct. The heterogeneity 

lies in the averaged level of air pollutants. For Beijing and Shanghai, the mean values 

of different air pollutants are much larger, indicating the air quality there is much 

worse and the d value is much smaller. Meanwhile, for Guangzhou and Shenzhen, the 
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averaged observed value is lower and the air quality is better, the d value seems much 

larger, implying higher levels of persistence. This implies that more active measures 

are needed to offset the external shocks of air pollution in Guangzhou and Shenzhen, 

to maintain the high air quality there. As for Beijing and Shanghai, air pollution seems 

to be stationary with long memory. However, structural reform is required to reduce 

pollutant emissions and thus bring down the average air pollution. Further research 

can be extended to other cities in China, in order to confirm the present research. 

References: 
 
Almond, D., Chen, Y., Greenstone, M., & Li, H. (2009). Winter Heating or Clean Air? 

Unintended Impacts of China's Huai River Policy. American Economic Review, 
99(2), 184-90. 

 
Anh, V., Duc, H., & Azzi, M. (1997). Modeling anthropogenic trends in air quality 

data. Journal of the Air & Waste Management Association, 47(1), 66-71. 
 
Barros, C. P., Gil-Alana, L. A., & de Gracia, F. P. (2014). Stationarity and Long Range 

Dependence of Carbon Dioxide Emissions: Evidence for Disaggregated Data. 
Environmental and Resource Economics, 1-12. 

 
Barros, C. P., Gil-Alana, L. A., & Wanke, P. (2016). Energy production in Brazil: 

Empirical facts based on persistence, seasonality and breaks. Energy Economics, 
54, 88-95. 

 
Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric 

Environment, 42(1), 1-42. 
 
Chelani, A.B. (2012). Persistence analysis of extreme CO, NO2 and O3 concentrations 

in ambient air of Delhi. Atmospheric Research, 108, 128-134. 
 
Chelani, A. B. (2013). Study of extreme CO, NO2, and O3 concentrations at a traffic 

site in Delhi: statistical persistence analysis and source identification. Aerosol Air 
Quality Res, 13, 377-384. 

 
Chelani, A. B. (2016). Long-memory property in air pollutant concentrations. 

Atmospheric Research, 171, 1-4. 
 



 15 

Chen, Y., Ebenstein, A., Greenstone, M., & Li, H. (2013). Evidence on the impact of 
sustained exposure to air pollution on life expectancy from China’s Huai River 
policy. Proceedings of the National Academy of Sciences, 110(32), 12936-12941. 

 
Cuñado, J., Gil-Alana, L. A., & De Gracia, F. P. (2005). A test for rational bubbles in 

the NASDAQ stock index: a fractionally integrated approach. Journal of Banking 
and Finance, 29(10), 2633-2654. 

 
Dahlhaus, R. (1989) Efficient parameter estimation for self-similar process, Annals of 

Statistics, 17, 1749-1766. 
 
Fang, M., Chan, C. K., Yao, X. (2009). Managing air quality in a rapidly developing 

nation: China. Atmospheric Environment, 43(1), 79-86. 
 
Feng, L., Liao, W., 2016. Legislation, plans, and policies for prevention and control 

ofair pollution in China: achievements, challenges, and improvements. Journal of 
Cleaner Production 112, 1549-1558. 

 
Gil-Alana, L. A., & Robinson, P. M. (1997). Testing of unit root and other 

nonstationary hypotheses in macroeconomic time series. Journal of Econometrics, 
80(2), 241-268. 

 
Gil-Alana, L. A., & Robinson, P. M. (2001). Testing of seasonal fractional integration 

in UK and Japanese consumption and income. Journal of Applied Econometrics, 
16(2), 95-114. 

 
Gil-Alana, L. A. (2003). Testing of Fractional Cointegration in Macroeconomic Time 

Series. Oxford Bulletin of Economics and Statistics, 65(4), 517-529. 
 
Guo, Y., Zeng, H., Zheng, R., Li, S., Barnett, A. G., Zhang, S., ... & Williams, G. 

(2016). The association between lung cancer incidence and ambient air pollution in 
China: A spatiotemporal analysis. Environmental Research, 144, 60-65. 

 
Harris, J. R., & Todaro, M. P. (1970). Migration, unemployment and development: a 

two-sector analysis. The American Economic Review, 126-142. 
 
Kai, S., Chun-qiong, L., Nan-shan, A., & Xiao-hong, Z. (2008). Using three methods 

to investigate time-scaling properties in air pollution indexes time series. Nonlinear 
Analysis: Real World Applications, 9(2), 693-707. 

 
Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). 

Detecting long-range correlations with detrended fluctuation analysis. Physica A: 
Statistical Mechanics and its Applications, 295(3), 441-454. 

 



 16 

Liu, Z., Wang, L., & Zhu, H. (2015). A time-scaling property of air pollution indices: 
a case study of Shanghai, China. Atmospheric Pollution Research, 6(5), 886-892. 

 
Lu, W. Z., & Xue, Y. (2014). Detrended fluctuation analysis of particle number 

concentrations on roadsides in Hong Kong. Building and Environment, 82, 
580-587. 

 
Matsoukas, C., Islam, S., & Rodriguez ‐Iturbe, I . (2000)    

analysis of rainfall and streamflow time series. Journal of Geophysical Research: 
Atmospheres (1984–2012), 105(D23), 29165-29172. 

 
Matus, K., Nam, K. M., Selin, N. E., Lamsal, L. N., Reilly, J. M., & Paltsev, S. (2012). 

Health damages from air pollution in China. Global Environmental Change, 22(1), 
55-66. 

 
Meraz, M., Rodriguez, E., Femat, R., Echeverria, J. C., & Alvarez-Ramirez, J. (2015). 

Statistical persistence of air pollutants (O 3, SO 2, NO 2 and PM 10) in Mexico 
City. Physica A: Statistical Mechanics and its Applications, 427, 202-217. 

 
Phillips, P.C.B. and Z. Xiao (1999), A primer on unit root testing, Journal of 

Economic Surveys 12, 423-470. 
 
Raga, G. B., & Le Moyne, L. (1996). On the nature of air pollution dynamics in 

Mexico City—I. Nonlinear analysis. Atmospheric Environment, 30(23), 
3987-3993. 

 
Robinson, P.M. (1994) Efficient tests of nonstationary hypotheses, Journal of the 

American Statistical Association 89, 1420-1437. 
 
Shi, H., Wang, Y., Huisingh, D., Wang, J., 2014. On moving towards an ecologically 

sound society: with special focus on preventing future smog crises in China and 
globally. Journal of Cleaner Production 64, 9-12. 

 
Shi, K. (2014). Detrended cross-correlation analysis of temperature, rainfall, PM 10 

and ambient dioxins in Hong Kong. Atmospheric Environment, 97, 130-135. 
 
Smyth, R. (2013). Are fluctuations in energy variables permanent or transitory? A 

survey of the literature on the integration properties of energy consumption and 
production. Applied Energy, 104, 371-378. 

 
Tanaka, S. (2015). Environmental regulations on air pollution in China and their 

impact on infant mortality. Journal of Health Economics, 42, 90-103. 
 
Varotsos, C., Ondov, J., & Efstathiou, M. (2005). Scaling properties of air pollution in 



 17 

Athens, Greece and Baltimore, Maryland. Atmospheric Environment, 39(22), 
4041-4047. 

 
Wang, S., & Hao, J. (2012). Air quality management in China: Issues, challenges, and 

options. Journal of Environmental Sciences, 24(1), 2-13. 
 
Wang, H., Fu, L., Zhou, Y., Du, X., & Ge, W. (2010). Trends in vehicular emissions in 

China's mega cities from 1995 to 2005. Environmental Pollution, 158(2), 394-400. 
 
Weng, Y. C., Chang, N. B., & Lee, T. Y. (2008). Nonlinear time series analysis of 

ground-level ozone dynamics in Southern Taiwan. Journal of Environmental 
Management, 87(3), 405-414. 

 
Windsor, H. L., & Toumi, R. (2001). Scaling and persistence of UK pollution. 

Atmospheric Environment, 35(27), 4545-4556. 
 
Zhang, K. M., & Wen, Z. G. (2008). Review and challenges of policies of 

environmental protection and sustainable development in China. Journal of 
environmental management, 88(4), 1249-1261. 

 
Zheng, S., Yi, H., & Li, H. (2015). The impacts of provincial energy and 

environmental policies on air pollution control in China. Renewable and 
Sustainable Energy Reviews, 49, 386-394. 

 
 
  



 18 

 

 
Figure 1: the SO2, Soot and NOx emissions in China during 2000-2013 (unit: billion 
tons). 
Sources: China statistical yearbook on environment 
 
 
 
 
 

 
Figure 2: The mean annual exposure of the PM 2.5 in China and World (unit: 
mg/m3) 
Sources: The World Bank Database. 
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Figure 3: The map of four mega-cities in China 
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Table 1: Concentration limits for basic pollutants in the Chinese National 
Standards for Ambient Air Quality "GB3095-2012"(unit: mg/m3) 

Pollutant Frequency Grade-I Grade-II 

SO2 
Daily 0.05 0.15 

Annual 0.02 0.06 

NO2 
Daily 0.08 0.08 

Annual 0.04 0.04 

CO 
Daily 4 4 

Hourly 10 10 

O3 
Daily 0.1 0.16 

Hourly 0.16 0.2 

PM 10 
Daily 0.05 0.15 

Annual 0.04 0.07 

PM 2.5 
Daily 0.035 0.075 

Annual 0.015 0.035 

 
 
Table 2: The summery statistics of the air pollutant in four mega-cities 

 
Variable Obs Mean Std. Dev. Min Max 

Beijing 

CO 784 1.25  0.94  0.22  8.11  
NO2 784 50.49  23.87  6.00  136.00  
SO2 784 16.86  19.59  2.00  133.00  

PM 10 784 104.82  73.09  0.00  461.00  
PM 2.5 784 78.50  66.74  5.00  476.00  

Shanghai 

CO 782 0.86  0.32  0.37  3.08  
NO2 782 45.23  21.24  4.00  142.00  
SO2 782 18.40  13.15  5.00  93.00  

PM 10 782 75.64  47.41  7.00  475.00  
PM 2.5 782 55.54  39.46  6.00  461.00  

Shenzhen 

CO 784 1.01  0.23  0.55  1.75  
NO2 784 32.94  12.26  10.00  101.00  
SO2 784 8.08  4.07  3.00  49.00  

PM 10 784 55.37  28.36  14.00  182.00  
PM 2.5 784 32.83  20.65  6.00  131.00  

Guangzhou 

CO 784 0.99  0.26  0.53  2.61  
NO2 784 45.46  18.09  15.00  145.00  
SO2 784 14.67  7.17  2.00  53.00  

PM 10 784 65.91  31.73  12.00  197.00  
PM 2.5 784 44.38  24.73  8.00  155.00  
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Table 3: Estimates of d for the case of White noise disturbances 
City Series No regressors An intercept A linear trend 

 
 
 

Beijing 

CO 0.51  (0.44,  0.60) 0.49  (0.41,  0.58) 0.49  (0.41,  0.58) 

NO2 0.52  (0.46,  0.60) 0.46  (0.39,  0.56) 0.46  (0.39,  0.56) 

SO2 0.51  (0.46,  0.57) 0.49  (0.44,  0.56) 0.48  (0.43,  0.56) 

PM 10 0.49  (0.41,  0.59) 0.47  (0.38,  0.58) 0.47  (0.38,  0.58) 

PM 2.5 0.53  (0.44,  0.64) 0.53  (0.43,  0.65) 0.53  (0.43,  0.65) 
      
 
 

Shanghai 

CO 0.53  (0.48,  0.59) 0.46  (0.40,  0.54) 0.46  (0.40,  0.54) 

NO2 0.59  (0.53,  0.67) 0.55  (0.48,  0.64) 0.55  (0.48,  0.64) 

SO2 0.57  (0.51,  0.62) 0.53  (0.47,  0.60) 0.53  (0.47,  0.60) 

PM 10 0.49  (0.43,  0.56) 0.45  (0.38,  0.53) 0.44  (0.37,  0.53) 

PM 2.5 0.46  (0.40,  0.53) 0.42  (0.36,  0.50) 0.42  (0.35,  0.50) 
       

 
 

Shenzhen 

CO 0.72  (0.67,  0.77) 0.59  (0.53,  0.66) 0.59  (0.53,  0.66) 

NO2 0.51  (0.45,  0.57) 0.44  (0.37,  0.51) 0.44  (0.37,  0.51) 

SO2 0.63  (0.57,  0.70) 0.61  (0.54,  0.68) 0.61  (0.54,  0.68) 

PM 10 0.72  (0.66,  0.80) 0.71  (0.63,  0.79) 0.71  (0.63,  0.79) 

PM 2.5 0.73  (0.66,  0.81) 0.71  (0.64,  0.80) 0.71  (0.64,  0.80) 
      
 
 

Guangzhou 

CO 0.60  (0.55,  0.66) 0.50  (0.45,  0.58) 0.50  (0.45,  0.58) 

NO2 0.64  (0.58,  0.72) 0.61  (0.54,  0.70) 0.62  (0.54,  0.70) 

SO2 0.61  (0.55,  0.68) 0.57  (0.50,  0.66) 0.58  (0.51,  0.66) 

PM 10 0.63  (0.56,  0.70) 0.60  (0.53,  0.68) 0.61  (0.54,  0.68) 

PM 2.5 0.63  (0.58,  0.71) 0.61  (0.54,  0.69) 0.61  (0.55,  0.69) 
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Table 4: Estimates of d for the case of AR(1) disturbances 
City Series No regressors An intercept A linear trend 

 
 
 

Beijing 

CO 0.24  (0.20,  0.32) 0.20  (0.15,  0.26) 0.20  (0.14,  0.26) 

NO2 0.31  (0.25,  0.37) 0.20  (0.15,  0.26) 0.18  (0.11,  0.25) 

SO2 0.39  (0.34,  0.44) 0.35  (0.31,  0.40) 0.32  (0.27,  0.38) 

PM 10 0.13  (0.06,  0.21) 0.09  (0.04,  0.15) 0.05  (0.00,  0.13) 

PM 2.5 0.10  (0.03,  0.18) 0.08  (0.02,  0.14) 0.07  (0.01,  0.14) 
      
 
 

Shanghai 

CO 0.39  (0.35,  0.44) 0.26  (0.21,  0.32) 0.25  (0.20,  0.32) 

NO2 0.40  (0.35,  0.46) 0.31  (0.26,  0.37) 0.31  (0.25,  0.37) 

SO2 0.47  (0.41,  0.53) 0.39  (0.33,  0.46) 0.37  (0.31,  0.45) 

PM 10 0.30  (0.24,  0.36) 0.21  (0.15,  0.27) 0.18  (0.11,  0.26) 

PM 2.5 0.30  (0.24,  0.36) 0.21  (0.16,  0.28) 0.19  (0.13,  0.26) 
      
 
 

Shenzhen 

CO 0.64  (0.58,  0.70) 0.45  (0.39,  0.49) 0.41  (0.34,  0.48) 

NO2 0.38  (0.31,  0.44) 0.23  (0.17,  0.30) 0.22  (0.16,  0.29) 

SO2 0.47  (0.41,  0.56) 0.37  (0.27,  0.49) 0.37  (0.26,  0.49) 

PM 10 0.45  (0.36,  0.54) 0.35  (0.26,  0.46) 0.35  (0.25,  0.46) 

PM 2.5 0.47  (0.39,  0.56) 0.39  (0.32,  0.49) 0.39  (0.31,  0.49) 
      
 
 

Guangzhou 

CO 0.50  (0.44,  0.56) 0.33  (0.28,  0.39) 0.32  (0.27,  0.38) 

NO2 0.41  (0.34,  0.49) 0.29  (0.21,  0.38) 0.28  (0.20,  0.38) 

SO2 0.42  (0.32,  0.53) 0.27  (0.17,  0.38) 0.11  (0.01,  0.37) 

PM 10 0.43  (0.35,  0.53) 0.31  (0.22,  0.41) 0.30  (0.20,  0.42) 

PM 2.5 0.44  (0.35,  0.54) 0.32  (0.24,  0.42) 0.31  (0.22,  0.43) 
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