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ABSTRACT

In this paper we examine the statistical properties of several stock market indices in
Europe, the US and Asia by means of determining the degree of dependence in
both the level and the volatility of the processes. In the latter case, we use the
squared returns as a proxy for the volatility. We also investigate the cyclical pattern
observed in the data and in particular, if the degree of dependence changes
depending on whether there is a bull or a bear period. We use fractional integration
and GARCH specifications. The results indicate that the indices are all nonstationary
I(1) processes with the squared returns displaying a degree of long memory
behavior. With respect to the bull and bear periods, we do not observe a systematic
pattern in terms of the degree of persistence though for some of the indices (FTSE,
Dax, Hang Seng and STI) there is a higher degree of dependence in both the level
and the volatility during the bull periods.
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1 Introduction

This paper deals with the analysis of the perst&tan the level and in the volatility of
several stock market prices in different countrlagparticular, we focus on the behavior of
three US stock markets (Standard and Poor 500; Doves and Nasdaq), three European
markets (FTSE; CAC and DAX) and three Asian (Nikkdang Seng and STI) indices.
However, instead of focusing exclusively on thexh@vior across the whole sample period,
we also examine the properties in the bull and hearods, testing if the degree of
persistence is different in these periods in odeseln the same line we also investigate the
volatility of the series and the subseries accardmthe bull and bear periods.

Many empirical papers have studied stock markéatMity during bull and bear
periods. A number of authors have found that vitthats higher during bear markets than in
bull periods, including Maheu and McCurdy (2000wards et al. (2003), Gomez-Biscarri
and Perez de Gracia (2004), Jones et al. (2004)z&kez et al. (2005), Guidolin and
Timmermann (2005), Nishina et al. (2006), Tu (20@8¢. On the other hand, persistence is
highly related with volatility. Various authors fetound that periods of high volatility are
also persistent and occur during periods of stoakket declines. The analysis of persistence
in the level and in the volatility of stock markessimportant for several reasons: first, if
stock market prices are persistent, either withmreaerting behavior or alternatively with
long memory returns it means that there is margmpfediction in its behavior showing
clear inefficiencies in the markets. Second, vbigatis a proxy for investment risk. Thus,
persistence in volatility implies that the risk areturn trade-off changes may also be
predicted over the business cycle. Moreover, perste in volatility can be used to predict
future economic variables (Campbell, Lettau, Mdlkied Xu, 2001). Thus, we examine in

this paper the degree of dependence in the sestasnly in the level but also in the squared



returns which are taken as proxies for the votgtitieries. For these purposes we will
employ fractional integration or 1(d) models, alomgh GARCH specifications.

The outline of the paper is as follows: Sectiohri2fly describes the methodology
employed in the paper. Section 3 presents theatatahe empirical results, conducting the
analysis first for the whole sample period, andhtfee each bull and bear sub-period in each

series. Section 4 contains some concluding comments

2. M ethodology
We model persistence by means of long range depead&RD) techniques. This is more
general than other approaches employed in theatlite¥ such as the sum of the AR
coefficients (Andrews and Chen, 1994) or the lar@ésroot, as we will show below. There
are two definitions of LRD, one in the time domaimd the other in the frequency domain.
The former states that given a covariance statjopaocess {x t = 0, £1, ... }, with
autocovariance function Ef(xEx)(Xtj-EX)] = vj, X displays LRD if
T
imr o [
j=-T
is infinite. A frequency domain definition may be #ollows. Suppose that; has an
absolutely continuous spectral distribution, areftéifore a spectral density function, denoted

by (1), and defined as

f(A) :2i§ yjcoslj, -m<Asm

j=—o
Then, x displays LRD if the spectral density function laagole at some frequenayin the

interval [0,x], i.e.,

f(A) > o, as A - X, A O [0,



(see McLeod and Hipel, 1978). Most of the empirili@rature has focused on the case
when the singularity or pole in the spectrum ocaire zero frequency (= 0). This is the

case of the standardd) models of the form:
Q-1)%% =u, t=0zx1.., (1)

where L is the lag-operatorl(x =X_) and U, is I(O).l However, fractional integration

may also occur at other frequencies away from Ondke case with the seasonal/cyclical

models. Note that the polynomial on the left-haittk ®f (1) can be expanded as

a-n?= EO@(—D" Ll =1-dL +—d(d2_1) N )
J:

implying that

(1‘|-)dxt= X — dx— +

Wy g

Thus, if d is an integer value; will be a function of a finite number of past obssions,
while if d is non-integer, pdepends upon values of the time series far awdyerpast, and
the higher the d is, the higher the level of depeice is between the observatidnglso, if

w in (1) is ARMA(p, q), xis then said to be a fractional ARIMA, ARFIMA(p, @) process,
and thus, it includes the AR(I)MA specificationsigely used to describe persistence) as
particular cases of interest. The origin of thesecgsses dates back to the 1960s, when
Granger (1966) and Adelman (1965) pointed out thahy aggregate series have a typical
shape where the spectral density increases drathatas the frequency approaches zero.
However, differencing the data frequently leadoverdifferencing at the zero frequency.
Fifteen years later, Robinson (1978) and Grang@8@)L showed that aggregation could be a

source of fractional integration. Since then, fiatl processes have been widely employed

1 An 1(0) process is defined as a covariance statipprocess with spectral density function thatdsitive and
finite at all frequencies. It includes the standefuite noise, stationary AR, MA and other modelsd dt is
considered as a minimal requirement for statistitference in time series analysis.

2 Though not displayed, the I(d) model also admitinéinite MA representation.



to describe the dynamics of many economic timessdsee, e.g. Diebold and Rudebusch,
1989; Sowell, 1992; Baillie, 1996; Gil-Alana andtRwson, 1997; etc).

The methodology employed in the paper to estinthee fractional differencing
parameter is based on the Whittle function in tiegdency domain (Dahlhaus, 1989) along
with a testing procedure developed by Robinson4)L#%at permits us to test any real value
d, encompassing thus stationary (d < 0.5) and atastry (d> 0.5) hypotheses.
Moreover, the limiting distribution in Robinson @4) is standard normal, and this limit
behaviour holds independently of the inclusion xclesion of deterministic terms in the
model and the modelling approach for the I(0) distnces. Moreover, Gaussianity is not a
requirement, a moment condition of only 2 beingdfisignt. This method, based on the
Lagrange Multiplier (LM) principle, tests the nhlypothesis:

H: d = @ (4)
in (1) where xcan be the errors in a regression model of tha:for
yt=Bth + X, t = 1,2,.., (5)
where yis the observed time serigsjs a (kx1) vector of unknown coefficients, andsza
set of deterministic terms that might include atericept (i.e., z= 1), an intercept with a
linear time trend (= (1,t)7), or any other type of deterministic processes.
In the following section we consider a model gilmnthe equations (1) and (5) with

zin (5) equal to (1, ) t> 1, 0 otherwise, i.e.,

ye =Bo + Bit +x, @ - L)% =, t =12.., (6)
and 1(0) ¢, and examine the three standard cases of no segsgs, =31 = 0 a priori in (6)),

an interceptfio unknown and; = 0 a priori) and an intercept with a linear tré¢fglandf;

% See also Gil-Alana and Hualde (2009) for an uptlag@iew of fractional integration and its applioas in
economic time series.



unknown). However, given the insignificancy of ttime trend coefficients in the results
obtained, we only report in the paper the reswdtet on a model with an intercépt.

Another common framework for modelling volatilitgf stock returns is the
AutoRegressive Conditionally Heteroscedastic (AR@kt)del introduced by Engle (1982)
and the GARCH (Generalized ARCH) of Bollerslev (&R8The basic idea of the ARCH
model is that the shocks of an asset are serialbpmelated but dependent and this can be
described by a simple quadratic function of thegéafvalues. Let;ée the shocks of an

asset, then the GARCBI(]) model assumes that

p q
of = w + _Zaistz—i + > Bjof (7)

i=1 =1
whereo; andfj are non-negative constants ands a strictly positive constant. The log
return series is given by = Iog(x[/x[_l) while g7 is the time varying variance.

The conditional variance is expressed as a lingaction of the squared past values
of the series. This specification is able to captand reproduce several important
characteristics of financial time series (Francd dakoian, 2010). These include succession
of quiet and turbulence periods; autocorrelatiothefsquares but absence of autocorrelation
of returns, and leptokurticity of the marginal distitions.

In this paper, the persistence in volatility in tell and bear periods is examined

using the GARCH(1,1) model
otz = w+ orls%_l + Blof_l, t=12.., 8)

wherew > 0; o> 0;B > 0; anda + B < 1 for the full series and each of the subsearfabe

return for the nine indices. The unconditional &ade is measured loy/ (1 —a —f3)

* Note that under §i(4), equation (6) can be rewritten y':; = [30]: + Bltt + U, where y: = (@1- L)do Vi

*

L = - L)dolt; and t: = (- L)dott; and given that s supposed to be 1(0p, andB; can be estimated
with OLS/GLS methods,t-values remaining valid iisttontext.



while the level of persistence is measured doy (), the closer this is to unity the more
persistent the volatility of return is. The halelivolatility, a measure of the average time it
takes the persistence to reduce by one — halftaraal by In(0.5)/Inf + B). The closemr +

B is to 1, the larger the half — life of the volayilis. The unconditional standard deviation of

the return series is measured®y /w/(1—-a —B) (Shittu, Yaya and Oguntade, 2009).

3. Data and empirical results
31 Thedata
The data sets used in this work are monthly USpeain and Asian open stock market
indices. They are Standard & Poor (S&P), Nasdaqy Dones for the US; FTSE, CAC 40
and DAX for the European market and Nikkei, Hangdgsand STI for the Asian markets.
The data were retrieved from Yahoo Finance website:
http://finance.yahoo.com.
[Insert Table 1 about here€]

Table 1 displays for each series the starting &edeinding month in the sample
period along with the sample size. The longesesds the one corresponding to the Dow
Jones, with data starting in October 1928. Thetekbone is the German DAX, with data

starting in January 2000. All series end in Febyr2ax 2.

3.2 Persistencein thelevel and volatility of theindices

We first examine the behavior of the whole sampledle 2 displays the estimates of d (and
the 95% confidence bands for the non-rejectionesalf d using Robinson, 1994) for each
series in a model with an intercept (if2.= 0 in (6)) and supposing that the errors areevhit
noise, Bloomfield (1973) and seasonal AR. The modklBloomfield (1973) is a
nonparametric approach to model [(0) processes pglatuces autocorrelations decaying

exponentially as in the AR case. Thus, it approx@maARMA structures with a small



number of parameters. It can be seen in this tddalethe estimated values of d are very
similar across the three specifications for the) Iddsturbances. We observe that the
estimates are very close to 1. In fact, the unit rall hypothesis (i.e., d = 1) cannot be
rejected for any type of disturbances for the cagdbe DAX, the FTSE, the Nasdaq and
the three Asian indices (Nikkei, Hang Seng and SHdy the remaining three indices (the
CAC 40, the Dow Jones and the S&P500), the unit memnot be rejected if the
disturbances are autocorrelated throughout the motleBloomfield (1973) but this
hypothesis is rejected in favour of orders of indgign above 1 in the other cases.
[Insert Tables 2 and 3 about her €]

Table 3 presents the same structure as Table 2dwtall series start at January
2000. In doing so we get better comparisons adiesseries. The results here support the
unit root hypothesis in all cases except for thd &kh white noise and seasonal AR
disturbances. These results are completely inwitke those obtained in other works that
find evidence of I(1) behavior in the stock marketices of different countries and across
different sample periods even in the context ofgloange dependence models. (Aydogan
and Booth, 1988; Lo, 1991; Hiemstra and Jones, 18@7%

Next we examine the volatility of the series byame of using the squared returns.
Alternatively, using the absolute returns the rsswiere similaf. Table 4 displays the
estimates of d and the 95% intervals in the nirlatiliby series. Here we obtain evidence of
long memory volatility (i.e. d > 0) for the thregpes of disturbances (white noise,
Bloomfield and AR) in the three series correspogdmthe US market. The same evidence
is reported for two of the Asian indices (NikkeidaBTI) and also for the DAX. For the

squared returns of the CAC we cannot reject the h¢pothesis if the disturbances are

®> The same evidence of I(1) behavior is obtainemiamy other works using standard unit root methods.

® Squared returns have been employed by Lobato awith $1998), Gil-Alana (2003), Cavalcante and Assaf
(2004), Cotter (2005) and Elder and Jin (2007),reie absolute returns have been used by Grangddiagd
(1996), Bollerslev and Wright (2000), Sibbertse@(2), Gil-Alana (2005) and others.



seasonally AR, and for the remaining two indice§SE and Hang Seng) the 1(0) is never
rejected. Performing the same type of analysishenseries starting in January 2000, in
Table 5 we obtain more evidence of long memorytaed(0) hypothesis cannot be rejected
only for the series corresponding to the three Asrarkets if the disturbances follow the

model of Bloomfield (1973). Once more, this is detent with the results reported in other

papers, finding evidence of long memory or longgemependence in the squared (and
absolute) return series (Ding et al., 1993; Lobatd Savin,1998; Dufrenot et al., 2005;

etc.).

[Insert Tables4 and 5 about her €]

3.3  Detection of bull and bear periods
A framework to identify the bull and bear periodsgiven in Pagan and Sossounov (2003).
We followed the procedures stated in the paperthisded to many cycles, where some of
the peaks and troughs were not significant, thagiiang an increase or decrease less than
20% from two successive troughs and peaks. Duke@dnstraint of available sample size
to estimate the persistence and GARCH model, weveththe insignificant cycles and the
results of the separation are presented in Table 6.

[Insert Table 6 about here]

It is observed in this table that the cycles ag/\similar across all series, detecting
two troughs and one peak throughout the samplé aases and therefore two bear and two
bull periods are obtained for each series. For Ul market, the troughs take place at
2002m10 and 2009m3 and the peak occurs at 2007mthe ithree series. For the European
market, the dates differ in some cases. Thus,itstetfough occurs at 2003m2 in the case of

the FTSE and at 2003m4 for CAC and DAX; the sedomdlgh is at 2009m3 in third series,
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however the peak takes place at 2007m11 for FTSE)G& m6 for CAC, and at 2008m1 for

DAX. Slight differences also occur in the caseha Asian markets.

34  Persistence and volatility in the bull and bear periods

First, we focus on the level of each subseries.pésent again the estimates of d and the
95% confidence bands for the three types of disnbs (white noise, Bloomfield and
seasonal AR) in a model with an intercept. The ltesare displayed in Table 7. Starting
with the US market (Table 7a) the first noticedelature is that the confidence intervals are
very wide, which is clearly a consequence of thalssample sizes used in most of the
subseries. We also notice that most of the estsnate in the interval (0, 1) implying
fractional integration and mean reverting behavitmwever, we cannot systematically say
that the degree of persistence is higher or lowéne bull or bear periods. Thus, we observe
that the orders of integration are higher in theosd subsamples (bull period) compared
with the first (bear), but in the third period (whiis bear) the values again increase,
decreasing in the final subsample (bull). Tabledridplays the results for the European
indices. As in the previous cases, we do not olesany systematic pattern in case of the
CAC. However, for the other two indices (FTSE an8iX) we observe an increase in the
order of integration when going from a bear petioa bull period and this happens in all
cases with uncorrelated and correlated disturbarides same evidence is reported for two
of the three Asian indices (Hang Seng and STinbtifor the Nikkei (Table 7c).

We can conclude from the results reported in Tabl¢hat higher degrees of
dependence are detected in the bull periods compdtk the bear ones only in the cases of
FTSE, DAX, Hang Seng and STI. However, for the naing indices (S&P500, Nasdaq,
Dow Jones, CAC-40 and Nikkei) we do not observesggificant pattern.

[Insert Tables 7 and 8 about her €]
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The same analysis is conducted on the squarenseteries for the nine indices.
Results are now displayed in Table 8. SimilarlyTable 7 the intervals are very wide
including the null of d = 0 in all cases. Startiagain with the US market we observe an
increase in the estimates of d in the bull periodfie cases of S&P500 and Dow Jones but
not in the Nasdagq. This behavior is also obsermétie DAX index and in some cases in the
CAC-40 for the European market (Table 8b) and lieriHang Seng and STI indices as well
in the Asian market (Table 8c).

As a general conclusion we find little evidenceamly systematic pattern in the
persistence in the level and in the volatility ulland bear periods. If any, higher degrees of
dependence are detected in both (level and v&yatin some indices during the bull

periods.

3.5 GARCH approach on the bull and bear periods

The GARCH(1,1) model was estimated for all the anfjgdes and the full sample of stock
returns for the nine indices in the three markétse results are displayed in Table 9.
Starting with the US market in Table 9a, and sgttn benchmark of 9.0E-O1 for the
persistence, it can be observed from the Dow Jstoek that volatility in the bull periods
are more persistent when compared with the beéodéhis is indicated in the"2and &'
subsamples and the full sample). Also, the hadflifdicated that it takes about 44 months
and 7 months for the stock in the bull periods ofwWDJones to revert back to their mean
levels. As expected the stronger the level of pe¥ace, the longer it takes to revert back to
the mean level. The same analysis is conductechersquared return series of the nine
indices. The results are also displayed in Table 9.

[Insert Table 9 about her €]
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In the US market, volatility in the bull periodsdathe full sample were found to be
persistent in the Dow Jones and the S&P500. In Eheopean market, only the'®2
subsample (bull period) and the full sample showetsistence in volatility, while these
results cannot be confirmed for the CAC 40 anddA&X. Asian indices do not
indicate any persistence except for the Hang Seregenthe T and 29 subseries were found

to be highly persistent.

4, Concluding comments

In this article we have examined the degree ofigtersce in the level and volatility of
several stock market indices in the US, Europe Asid. For this purpose we have used
methodologies based on fractional integration adRGH approaches. The results indicate
that the indices are nonstationary 1(1) thoughtioa@l degrees of integration with values
slightly below or above 1 are also plausible in sooases. We also obtain evidence of
stationary long memory for the volatility measutiadterms of the squared returns. In the
paper we also detect the peaks and troughs inatimle for each series in order to detect
bull and bear periods. The results are very camsisacross the different indices, obtaining
in all cases two troughs and one peak and thudyingptwo bear and two bull periods.
Then, we examine again persistence but this timedah subsample in each series. The
results indicate that there is not a systematitepatacross all indices though in some of
them we observe higher degrees of dependence imtbetlevel and volatility in the bull

periods. This is in fact the case of S&P500, Dowedy FTSE, Dax, Hang Seng and STI.
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Tablesand Figures

Table 1. Data and sample sizes examined

Market Index Starting month  Ending month Sample si:
Nasdaq February 1971  February 2012 493
u.S. S&P 500 January 1950  February 2012 746
Dow Jones October 192§ February 2012 1001
CAC-40 March 1990 February 2012 264
Europe FTSE April 1984 | February 2012 335
DAX January 2000 February 2012 146
. Nikkei January 1984| February 2012 338
Asia Hang Seng December 1986February 2012 303
STI December 198y February 2012 291

T~
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Table 2: Estimates of d and 95% confidenceintervals

Whole simple

White noise

Bloomfield

Seasonal AR

CAC

1.085 (1.014, 1.176

)1.072 (0.951, 1.228)

1.083 (1.011, 1.17§

DAX

1.056 (0.958, 1.195)

0.958 (0.802, 1.179)

1.061 (0.959, 1.205)

FTSE

1.005 (0.940, 1.086)

0.973 (0.872, 1.104)

1.002 (0.937, 1.085)

DOW JONES

1.037 (0.998, 1.082)

0.989 (0.935, 1.073)

1.042 (1.001, 1.090

S&P 500

1.061 (1.016, 1.114)1.024 (0.952, 1.111)

1.050 (1.014, 1.114

NASDAQ

1.039 (0.979, 1.109)

1.024 (0.922, 1.148)

1.039 (0.984, 1.108)

NIKKEI

1.029 (0.967, 1.109)

1.010 (0.909, 1.130)

1.029 (0.966, 1.111)

HANG SENG

1.039 (0.949, 1.150)

0.870 (0.742, 1.076)

1.016 (0.929, 1.126)

STI

1.064 (0.984, 1.161)

1.048 (0.879, 1.260)

1.068 (0.986, 1.170)

In bold: Evidence of unit roots at the 5% level.

Table 3: Estimates of d and 95% confidence bands with all series starting at

2000m1

146 observation

5 White noise

Bloomfield

Seasonal AR

CAC

1.067 (0.975, 1.195)

1.022 (0.868, 1.226)

1.078 (0.971, 1.213)

DAX

1.056 (0.958, 1.195)

0.958 (0.802, 1.179)

1.061 (0.959, 1.205)

FTSE

1.022 (0.934, 1.144)

1.009 (0.867, 1.211)

1.027 (0.935, 1.154)

DOW JONES

1.037 (0.933, 1.180)

0.889 (0.699, 1.149)

1.051 (0.943, 1.195)

S&P 500

1.071 (0.969, 1.210)

0.946 (0.771, 1.172)

1.071 (0.969, 1.212)

NASDAQ

0.996 (0.907, 1.121)

0.947 (0.809, 1.122)

1.003 (0.919, 1.118)

NIKKEI

1.091 (0.998, 1.221)

1.071 (0.909, 1.291)

1.093 (0.997, 1.224)

HANG SENG

1.095 (0.974, 1.263)

0.871 (0.708, 1.108)

1.078 (0.964, 1.242)

STI

1.110 (1.009, 1.245)1.081 (0.881, 1.351)

1.111 (1.009, 1.249

In bold: Evidence of unit roots at the 5% level.




Table4: Estimates of d and 95% confidenceintervals

Whole simple White noise Bloomfield Seasonal AR
CAC 0.161 (0.091, 0.251) | 0.182(0.061, 0.339) | 0.056 (-0.022, 0.159
DAX 0.106 (0.029, 0.223) | 0.258 (0.091, 0.520) | 0.104 (0.021, 0.212)
FTSE 0.044 (-0.017, 0.123).038 (-0.057, 0.177)0.046 (-0.017, 0.122

DOW JONES| 0.184 (0.161, 0.211) | 0.319(0.281, 0.387) | 0.169 (0.142, 0.191)

S&P 500 | 0.134(0.091, 0.184) | 0.136 (0.073, 0.235) | 0.194 (0.138, 0.263)
NASDAQ | 0.187(0.145, 0.239) | 0.282(0.196, 0.369) | 0.179 (0.135, 0.233)
NIKKEI 0.167 (0.098, 0.254) | 0.133(0.009, 0.283) | 0.167 (0.099, 0.253)
HANG SENG| 0.008 (-0.055, 0.091))0.021 (-0.093, 0.164)0.004 (-0.066, 0.087,

STI 0.193 (0.137, 0.265) | 0.263 (0.164, 0.386) | 0.135 (0.092, 0.186)

In bold: Evidence of long memory (d > 0) at the ES¢el.

Table5: Estimates of d and 95% confidence bandswith all series starting at

2000m1

146 observation

~

D

White noise

Bloomfield

Seasonal AR

CAC 0.166 (0.086, 0.283) | 0.236 (0.072, 0.455) | 0.171 (0.084, 0.293)
DAX 0.106 (0.027, 0.212) | 0.258 (0.091, 0.520) | 0.104 (0.021, 0.212)
FTSE 0.175 (0.089, 0.291) | 0.206 (0.042, 0.441) | 0.175 (0.091, 0.290)
DOW JONES | 0.174 (0.087, 0.295) | 0.155 (0.012, 0.364) | 0.172 (0.084, 0.293)
S&P 500 | 0.241(0.149, 0.363) | 0.173 (0.026, 0.368) | 0.241 (0.151, 0.368)
NASDAQ | 0.268 (0.195, 0.371) | 0.285 (0.163, 0.463) | 0.282 (0.198, 0.404)
NIKKEI 0.095 (0.003, 0.224) | 0.044 (-0.091, 0.264)0.096 (0.005, 0.224)
HANG SENG | 0.212 (0.114, 0.356) | 0.072 (-0.056, 0.250)0.205 (0.104, 0.350)
STI 0.114 (0.023, 0.243) | 0.052 (-0.077, 0.237)0.115 (0.025, 0.243)

In bold: Evidence of long memory (d > O}fe 5% level.
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Table 6a: US Bull and bear markets phases

S&P

1% (bear)

2000m1 - 2002m1Q

S&P

2" (bull)

2002m11 - 2007m1i

S&P

3 (bear)

2007m12 — 2009m3

S&P

4" (bull)

2009m4 - 2012m2

Nasdaq

1* (bear)

2000m1 - 2002m1Q

Nasdaq

2" (bull)

2002m11 - 2007m1i

Nasdaq

3% (bear)

2007m12 — 2009m3

Nasdaq

47 (bull)

2009m4 — 2012m2

Dow Jonesg

1% (bear)

2000m1 - 2002m1Q

Dow Jones

2" (bull)

2002m11 - 2007m1f

Dow Jones

3% (bear)

2007m12 — 2009m3

Dow Jonesg

47 (bull)

2009m4 — 2012m2

Table 6b: European Bull and Bear M arkets phases

FTSE

1% (bear)

2000m1 - 2003mZ

FTSE

2™ (bull)

2003m3 - 2007m1{

FTSE

3% (bear)

2007m12 — 2009m3

FTSE

4™ (bull)

2009m4 - 2012m2

CAC

1% (bear)

2000m1 - 2003m4

CAC

2 (bull)

2003m5 - 2007m6

CAC

3% (bear)

2007m7 —2009m3

CAC

7 (bull)

2009m4 - 2012m2

DAX

1% (bear)

2000m1 - 2003m4

DAX

2" (bull)

2003m5 - 2008m1

DAX

3" (bear)

2008m2 - 2009m3

DAX

4™ (oull)

2009m4 - 2012m2

20



Table6c: Asian Bull and Bear Markets phases

:

L

=]

Nikkei | 1* (bear)| 2000m1 —2003m5
Nikkei | 2" (bull) | 2003m6 — 2007m7
Nikkei | 3° (bear)| 2007m8 — 2009m3
Nikkei | 4" (bull) | 2009m4 — 2012m2
Hang Seng 1° (bear)| 2000m1 — 2003m4
Hang Send 2" (bull) | 2003m5 — 2007m1
Hang Send 3" (bear)| 2007m12 — 2009m
Hang Send 4™ (bull) | 2009m4 — 2012m2
STI 1% (bear) | 2000m1 — 2003m4
STI 2" (bull) | 2003m5 — 2007m1
STI 3% (bear)| 2007m12 — 2009m
STI 4" (bull) | 2009m4 — 2012m2
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Table 7a: Estimates of d and 95% confidenceintervalsin the bull and bear periods

US market

White noise Bloomfield Seasonal AR
S&P T (bear) 0.682 (0.539, | 0.579 (0.252, 0.874 0.673 (0.544,
S&P 2 (bull) 0.831 (0.695, 0.644 (0.521, 0.817 0.819 (0.674,
S&P 39 (bear) 0.909 (0.462, XXX 1.251 (0.503,
S&P 4" (bull) 0.692 (0.468, 0.448 (0.084, 1.693 0.693 (0.471,
Nasdagq T (bear) 0.737 (0.601, | 0.597 (0.344, 0.847 0.672 (0.514,
Nasdagq 2 (bull) 0.763 (0.566, 0.558 (0.376, 1.209 0.827 (0.543,
Nasdaq % (bear) 0.861 (0.398, XXX 0.774 (0.341,
Nasdagq & (bull) 0.605 (0.455, 0.493 (0.174, 1.883 0.615 (0.464,
Dow Jones ¥ (bear) 0.487 (0.229, 0.091 (-0.522, 0.554 (0.324,
Dow Jones %' (bull) 0.873 (0.732, 0.744 (0.517, 1.033 0.881 (0.723,
Dow Jones § 0.794 (0.377, XXX 1.092 (0.584,
Dow Jones % (bull) 0.641 (0.471, 0.416 (0.072, 1.544 0.643 (0.481,

In bold: Evidence of unit roots at the 5% level.

Table 7b: Estimates of d and 95% confidenceintervalsin the bull and bear periods

European market

D4)

White noise Bloomfield Seasonal AR
CAC 1%(bear) | 0.868 (0.742, 1.088)0.822 (0.621, 1.144) 0.894 (0.776, 1.1
CAC 2 (bull) | 0.782 (0.675, 1.045)0.645 (0.433, 0.907) 0.784 (0.662, 1.0
CAC 3%(bear) | 0.768 (0.533, 1.319) XXX 0.754 (0.563, 1.288
CAC 4" (bull) | 0.961 (0.664, 1.386)0.541 (-0.171, 1.293)0.937 (0.632, 1.364
FTSE f'(bear)| 0.676 (0.562, 0.997)0.723 (0.491, 0.992) 0.703 (0.594, 1.0
FTSE 29 (bull) | 0.718 (0.649, 0.909)0.645 (0.501, 0.764) 0.711 (0.644, 0.9

FTSE 3 (bear)

0.654 (0.329, 1.056

) XXX

0.733 (0.401, 1.394

D4)

17)
D7)

32)

03)

D4)

FTSE 4" (bull) | 0.828 (0.504, 1.263)0.420 (0.012, 1.263) 0.866 (0.499, 1.3
DAX 1% (bear)| 0.833 (0.706, 1.089).674 (0.469, 0.931) 0.849 (0.721, 1.0
DAX 2" (bull) | 0.913 (0.797, 1.170)0.783 (0.651, 0.973) 0.921 (0.806, 1.2
DAX 3" (bear)| 0.832 (0.411, 1.31)) XXX XXX

DAX 4™ (bull) | 0.845 (0.521, 1.396)0.582 (0.254, 1.197) 0.873 (0.481, 1.4

D2)

In bold: Evidence of unit roots at the 5%dkev
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Table 7c: Estimates of d and 95% confidence intervalsin the bull and bear periods

Asian market
White noise Bloomfield Seasonal AR
Nikkei 1% (bear) 0.773 (0.636, | 0.537 (0.233, 0.951 0.774 (0.633,
Nikkei 2" (bull) 0.968 (0.770, 0.827 (0.541, 1.644 0.966 (0.772,
Nikkei 3 (bear) 0.856 (0.542, XXX 0.881 (0.585,
Nikkei 4" (bull) | 0.764 (0.464, 1.144 0.342 (-0.277, 0.767 (0.452,
Hang Seng (bear) 0.668 (0.557, | 0.513 (0.351, 0.644 0.633 (0.522,
Hang Seng ™' (bull) 1.505 (1.211, 1.587 (0.217, 2.610 1.914 (1.561,
Hang Seng '3 0.715 (0.352, XXX 0.548 (0.224,
Hang Seng 4 (bull) 0.997 (0.566, 0.897 (0.031, 2.177 0.934 (0.553,
STI % (bear) 0.529 (0.404, | 0.394 (0.066, 1.173 0.484 (0.381,
STI 2 (bull) 1.005 (0.824, 0.858 (0.382, 1.374 1.034 (0.892,
STI 3¢ (bear) 0.951 (0.514, XXX 0.692 (0.342,
STI 4" (bull) 0.975 (0.474, 1.093 (0.171, 2.389 0.831 (0.434,

In bold: Evidence of unit roots at the 5%dEev
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Table 8a: Estimates of d and 95% confidence intervalsin the squared returnsfor the
bull and bear periods. US market

White noise Bloomfield Seasonal AR
S&P T (bear) -0.437 (-0.814, XXX -0.463 (-0.851,
S&P 2" (bull) 0.077 (-0.036, | 0.004 (-0.177,0.224 0.084 (-0.034,
S&P 3% (bear) -0.043 (-0.457, XXX -0.084 (-0.387,
S&P 4" (bull) -0.028 (-0.337, -0.521 (-0.741, 0.055 (-0.336,
Nasdaq T (bear) 0.044 (-0.138, -0.052 (-0.893, 0.146 (-0.077,
Nasdaq 2 (bull) 0.119 (-0.044, -0.166 (-0.417, 0.122 (-0.034,
Nasdaq % (bear) 0.374 (-0.177, XXX 0.426 (-0.244,
Nasdaq # (bull) -0.048 (-0.376, -0.387 (-0.817, -0.054 (-0.297,
Dow Jones 1 -0.287 (-0.651, -0.512 (-0.817, -0.107 (-0.466,
Dow Jones 2 0.076 (-0.044, 0.053 (-0.134, 0.062 (-0.053,
Dow Jones % -0.337 (-0.717, XXX -0.268 (-0.621,
Dow Jones 4 -0.133 (-0.472, -0.554 (-1.007, -0.133 (-0.488,

In bold: Evidence of unit roots at the 5% level.

Table 8b: Estimates of d and 95% confidenceintervalsin the squared returnsfor bull
and bear periods. European market

White noise

Bloomfield

Seasonal AR

CAC 1*(bear)

0.072 (-0.094, 0.337)

0.074 (-0.381,1D)8

0.217 (0.044, 0.453

CAC 2% (bull) | 0.086 (-0.081, 0.332) 0.066 (-0.42271F) | -0.007 (-0.247, 0.286)
CAC 3%(bear) | -0.115 (-0.609, 0.174) XXX -0.207 (-0.555, 0.197
CAC 4" (bull) | 0.094 (-0.199, 0.974) -0.511 (-0.90703B)| 0.081 (-0.206, 1.073

FTSE f'(bear)

0.166 (-0.014, 0.43:

) 0.097 (-0.533,49)5

0.236 (0.051, 0.535

FTSE 29 (bull)

-0.074 (-0.026, 0.141

)-0.038 (-0.351, 0.474

)-0.064 (-0.226, 0.176

FTSE 3 (bear)

-0.219 (-0.664, 0.513

) XXX

-0.211 (-0.634, 0.741

FTSE 4" (bull)

-0.088 (-0.297, 0.222

)-0.217 (-0.661, 0.244

)-0.088 (-0.297, 0.208

DAX 1% (bear)

0.047 (-0.116, 0.291

) 0.098 (-0.33488)

0.126 (-0.024, 0.327

DAX 2" (bull)

0.064 (-0.071, 0.266

0.104 (-0.38145%)

0.262 (-0.074, 0.464

DAX 3" (bear)

-0.221 (-0.814, 0.31

1) XXX

XXX

DAX 4™ (bull)

-0.008 (-0.194, 0.283

)-0.108 (-0.552, 0.402

)-0.036 (-0.254, 0.275

In bold: Evidence of unit roots at the 5%dkev
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Table 8c: Estimates of d and 95% confidenceintervalsin the squared returnsfor the
bull and bear periods. Asian market

White noise Bloomfield Seasonal AR
Nikkei 1% (bear) 0.122 (-0.144, -0.453 (-0.808, 0.094 (-0.186,
Nikkei 2" (bull) 0.005 (-0.164, -0.054 (-0.662, -0.017 (-0.417,
Nikkei 3 (bear) -0.128 (-0.442, XXX -0.184 (-0.704,
Nikkei 4™ (bull) -0.216 (-0.4009, -0.417 (-1.184, -0.165 (-0.4086,
Hang Seng -0.072 (-0.234, -0.197 (-0.633, -0.088 (-0.246,
Hang Seng % 0.681 (0.398, 1.014 -0.515 (-0.707,| 0.681 (0.394, 1.043
Hang Seng '8 -0.284 (-0.711, XXX -0.117 (-0.841,
Hang Seng % 0.224 (-0.014, -0.222 (-0.602, 0.294 (0.022,
STI 1% (bear) -0.233 (-0.481, XXX -0.253 (-0.544,
STI 2 (bull) 0.074 (-0.057, 0.153 (-0.118, 0.074 (-0.054,
STI 3¢ (bear) -0.148 (-0.629, XXX -0.108 (-0.444,
STI 4" (bull) 0.185 (-0.004, 0.317 (-0.142, 0.233 (0.046, 0.465

In bold: Evidence of unit roots at the 5%dkev
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Table 9a: Estimates of persistence and volatility in thereturn seriesof USindices

sub- GARCH estimates Persistence  nconditional. .
samples (a),a,ﬁ) a+p Std. dev. Half-life
Dow Jones % (bear) (1.44E-04, 1.59E-03, 7.20E-01) 7.22E-01 7B:04 2.12
2% (bull)  (4.81E-07, 2.03E-02, 9.64E-01) 9.84E-01 3.06E-05 438
3¢ (bear) (9.00E-04, 2.76E-02, 4.11E-02) 6.87E-02 6064 0.259
4" (bull) (2.16E-05, 5.00E-05, 9.00E-01)  9.00E-01 2.16E-04 6.58
s;lrjrilple (1.49E-05, 1.81E-01, 7.94E-01) 9.75E-01 2.44E-02 274
S & P 500 i (bear) (1.45E-04, 8.24E-04, 7.34E-01) 7.35E-01 7504 2.25
2" (bull) (2.20E-08, 3.24E-02, 9.51E-01)  9.83E-01 1.33E-06 41.4
3¢ (bear) (1.09E-03, 1.13E-01, 2.09E-02) 1.34E-01 6E-03 0.345
4" (bull)  (4.96E-04, 2.12E-03, 5.30E-02) 5.51E-02 25-04 0.239
s;lrjrilple (1.22E-05, 2.29E-01, 7.63E-01) 9.92E-01 3.91E-02 86.3
Nasdaq 1 (bear) (3.89E-04, 9.99E-02, 7.49E-01) 8.49E-01 72:83 4.23
2" (bull) (4.83E-04, 9.84E-02, 2.64E-03) 1.01E-01 TE=D4 0.302
3¢ (bear) (1.49E-03, 1.07E-02, 7.10E-03) 1.78E-02 2E-B3 0.172
4" (bul)  (2.22E-04, 4.94E-04, 7.08E-01) 7.08E-01 62E-04 2.01
s;lrjrilple (5.47E-05, 2.18E-01, 7.23E-01) 9.41E-01 3.04E-02 114
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Table 9b: Estimates of persistence and volatility in thereturns of European indices

sub- GARCH estimates Persistence ynconditional. Halfife
samples (w,a,B) a+p Std. dev.
FTSE  f(bear) (1.40E-04,178E-01,529E-01) 7.07E-01 B8E-04 2
2 (bull)  (4.25E-06, 2.70E-04, 9.62E-01) 9.62E-01  1.13E-04 18

3% (bear) (8.04E-04, 1.38E-02, 5.43E-02) 6.81E-02  3B:64 0.258

4" (bull) (1.23E-04, 9.24E-03, 7.44E-01) 7.53E-01  98E-04 2.45

full
sample

(2.94E-05, 1.97E-01, 7.21E-01) 9.18E-01 1.89E-02 8.10

CAC 40 T (bear) (3.24E-04,1.87E-01, 4.49E-01) 6.36E-01  OB-04 153
29 (bull) (3.70E-05, 4.00E-01, 4.37E-01) 8.37E-01  7ED4 3.90
39 (bear) (7.66E-04, 3.28E-03, 2.57E-01) 2.60E-01  4H-03 0.515

4" (bull) (1.70E-05, 7.05E-03, 9.66E-01)9.73E-01  6.31E-04 25.4

full
sample

(5.88E-05, 2.40E-01, 6.82E-01) 9.22E-01 2.75E-02 8.54

DAX  1%(bear) (3.49E-04,3.93E-01,4.43E-01) 8.36E-01  3B-03 3.87
2 (bull) (7.41E-05, 1.73E-01, 5.99E-01) 7.72E-01  SED4 2.68
3% (bear) (1.26E-03, 3.50E-02, 2.04E-02) 5.54E-02  3H:83 0.240

4" (bull) (2.98E-05, 1.87E-03, 9.57E-01) 9.59E-01  7.25E-04 16,5

full
sample

(1.54E-04, 2.30E-01, 6.08E-01) 8.38E-01 3.08E-02 3.92




Table 9c: Estimates of persistence and volatility in thereturnsof Asian indices

GARCH estimates

sub- Persistence ynconditional. :
samples (a),a,,B) a+p Std. dev.  Halilife
Nikkei 1% (bear) (6.65E-04, 6.39E-02, 4.19E-02) 1.06E-01 32-02 0.309
2" (bull)  (4.60E-05, 4.40E-04, 881E-01) 8.81E-01  1.97E-02 5.48
3d (bear) (1.40E-03,7.77E-04,1.73E-02) 1.81E-02 8B-02 0.173
4" (bull) (4.38E-04, 2.06E-03, 4.27E-01) 4.29E-01  77E-02 0.819
S;Lrjrlllple (2.44E-04, 2.26E-01, 4.23E-01) 6.49E-01 2.64E-02 1.60
Hang Seng ‘i(bear) (5.90E-07, 3.75E-02, 9.57E-01)9.94E-01 1.01E-02 120
2 (bull) (2.99E-07, 2.50E-02, 9.65E-01) 9.90E-01  5.34E-03 658
39 (bear) (1.59E-03, 4.54E-04, 1.67E-01) 1.68E-01  7B.82 0.388
4" (bull) (1.61E-04, 1.63E-01, 4.88E-01) 651E-01  2.15E-02 161
Sa]:l;]!llple (1.78E-04, 2.97E-01, 5.79E-01) 8.76E-01 3.79E-02 5.25
STI 1 (bear) (9.77E-04, 3.61E-04, 1.00E-01) 1.01E-01 0B-82 0.302
2 (bull) (4.49E-05, 9.44E-02, 6.88E-01) 7.83E-01  1.44E-02  2.83
3% (bear) (1.73E-03, 1.74E-02, 4.59E-02)6.33E-02  4.29E-02  0.251
4% (bull) (1.96E-04, 4.06E-01, 3.15E-01) 7.20E-01  2.65E-02 211
S;‘;L'ple (3.11E-05, 1.56E-01, 8.11E-01) 9.67E-01  3.09E-02 209

28



