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ABSTRACT 

 
In this paper we examine the statistical properties of several stock market indices in 
Europe, the US and Asia by means of determining the degree of dependence in 
both the level and the volatility of the processes. In the latter case, we use the 
squared returns as a proxy for the volatility. We also investigate the cyclical pattern 
observed in the data and in particular, if the degree of dependence changes 
depending on whether there is a bull or a bear period. We use fractional integration 
and GARCH specifications. The results indicate that the indices are all nonstationary 
I(1) processes with the squared returns displaying a degree of long memory 
behavior. With respect to the bull and bear periods, we do not observe a systematic 
pattern in terms of the degree of persistence though for some of the indices (FTSE, 
Dax, Hang Seng and STI) there is a higher degree of dependence in both the level 
and the volatility during the bull periods. 
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1. Introduction 

This paper deals with the analysis of the persistence in the level and in the volatility of 

several stock market prices in different countries. In particular, we focus on the behavior of 

three US stock markets (Standard and Poor 500; Dow Jones and Nasdaq), three European 

markets (FTSE; CAC and DAX) and three Asian (Nikkei, Hang Seng and STI) indices. 

However, instead of focusing exclusively on their behavior across the whole sample period, 

we also examine the properties in the bull and bear periods, testing if the degree of 

persistence is different in these periods in our series. In the same line we also investigate the 

volatility of the series and the subseries according to the bull and bear periods. 

 Many empirical papers have studied stock market volatility during bull and bear 

periods. A number of authors have found that volatility is higher during bear markets than in 

bull periods, including Maheu and McCurdy (2000), Edwards et al. (2003), Gomez-Biscarri 

and Perez de Gracia (2004), Jones et al. (2004), Gonzalez et al. (2005), Guidolin and 

Timmermann (2005), Nishina et al. (2006), Tu (2006), etc. On the other hand, persistence is 

highly related with volatility. Various authors have found that periods of high volatility are 

also persistent and occur during periods of stock market declines. The analysis of persistence 

in the level and in the volatility of stock markets is important for several reasons: first, if 

stock market prices are persistent, either with mean reverting behavior or alternatively with 

long memory returns it means that there is margin for prediction in its behavior showing 

clear inefficiencies in the markets. Second, volatility is a proxy for investment risk. Thus, 

persistence in volatility implies that the risk and return trade-off changes may also be 

predicted over the business cycle. Moreover, persistence in volatility can be used to predict 

future economic variables (Campbell, Lettau, Malkiel and Xu, 2001). Thus, we examine in 

this paper the degree of dependence in the series not only in the level but also in the squared 
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returns which are taken as proxies for the volatility series. For these purposes we will 

employ fractional integration or I(d) models, along with GARCH specifications. 

 The outline of the paper is as follows: Section 2 briefly describes the methodology 

employed in the paper. Section 3 presents the data and the empirical results, conducting the 

analysis first for the whole sample period, and then for each bull and bear sub-period in each 

series. Section 4 contains some concluding comments. 

 

2. Methodology 

We model persistence by means of long range dependence (LRD) techniques. This is more 

general than other approaches employed in the literature such as the sum of the AR 

coefficients (Andrews and Chen, 1994) or the largest AR root, as we will show below. There 

are two definitions of LRD, one in the time domain and the other in the frequency domain.  

The former states that given a covariance stationary process {xt, t = 0, ±1, … }, with 

autocovariance function E[(xt –Ext)(xt-j-Ext)] = γj, xt displays LRD if 

∑
−=

∞→
T

Tj
jT γlim  

is infinite. A frequency domain definition may be as follows. Suppose that xt has an 

absolutely continuous spectral distribution, and therefore a spectral density function, denoted 

by f(λ), and defined as 

∑ ≤<−=
∞

−∞=j
j jf .,cos

2

1
)( πλπλγ

π
λ  

Then, xt displays LRD if the spectral density function has a pole at some frequency λ in the 

interval [0, π], i.e., 

,],0[,as,)(f ** π∈λλ→λ∞→λ        
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(see McLeod and Hipel, 1978). Most of the empirical literature has focused on the case 

when the singularity or pole in the spectrum occurs at the zero frequency (λ* = 0). This is the 

case of the standard ( )dI  models of the form: 

,...,1,0,)1( ±==− tuxL tt
d    (1) 

where L  is the lag-operator ( 1−= tt xLx ) and tu  is ( )0I .1 However, fractional integration 

may also occur at other frequencies away from 0, as in the case with the seasonal/cyclical 

models. Note that the polynomial on the left-hand-side of (1) can be expanded as 

  ,...
2
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implying that 

....x
)d(d
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1
1   (3) 

Thus, if d is an integer value, xt will be a function of a finite number of past observations, 

while if d is non-integer, xt depends upon values of the time series far away in the past, and 

the higher the d is, the higher the level of dependence is between the observations.2   Also, if 

ut in (1) is ARMA(p, q), xt is then said to be a fractional ARIMA, ARFIMA(p, d, q) process, 

and thus, it includes the AR(I)MA specifications (widely used to describe persistence) as 

particular cases of interest. The origin of these processes dates back to the 1960s, when 

Granger (1966) and Adelman (1965) pointed out that many aggregate series have a typical 

shape where the spectral density increases dramatically as the frequency approaches zero. 

However, differencing the data frequently leads to overdifferencing at the zero frequency. 

Fifteen years later, Robinson (1978) and Granger (1980) showed that aggregation could be a 

source of fractional integration. Since then, fractional processes have been widely employed 

                                                 
1 An I(0) process is defined as a covariance stationary process with spectral density function that is positive and 
finite at all frequencies. It includes the standard white noise, stationary AR, MA and other models, and it is 
considered as a minimal requirement for statistical inference in time series analysis. 
2 Though not displayed, the I(d) model also admits an infinite MA representation. 
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to describe the dynamics of many economic time series (see, e.g. Diebold and Rudebusch, 

1989; Sowell, 1992; Baillie, 1996; Gil-Alana and Robinson, 1997; etc.).3 

 The methodology employed in the paper to estimate the fractional differencing 

parameter is based on the Whittle function in the frequency domain (Dahlhaus, 1989) along 

with a testing procedure developed by Robinson (1994) that permits us to test any real value 

d, encompassing thus stationary (d < 0.5) and nonstationary (d ≥  0.5) hypotheses. 

Moreover, the limiting distribution in Robinson (1994) is standard normal, and this limit 

behaviour holds independently of the inclusion or exclusion of deterministic terms in the 

model and the modelling approach for the I(0) disturbances. Moreover, Gaussianity is not a 

requirement, a moment condition of only 2 being sufficient. This method, based on the 

Lagrange Multiplier (LM) principle, tests the null hypothesis:  

    Ho:  d  =  do      (4) 

in (1) where xt can be the errors in a regression model of the form: 

,...,2,1t,xzy tt
T

t =+β=                (5) 

where yt is the observed time series; β is a (kx1) vector of unknown coefficients, and zt is a 

set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with a 

linear time trend (zt = (1,t)T), or any other type of deterministic processes.  

In the following section we consider a model given by the equations (1) and (5) with 

zt in (5) equal to (1, t)T, t ≥  1, 0 otherwise, i.e., 

,...,2,1t,ux)L1(,xty tt
d

t10t ==−+β+β=          (6) 

and I(0) ut, and examine the three standard cases of no regressors (β0 = β1 = 0 a priori in (6)), 

an intercept (β0 unknown and β1 = 0 a priori) and an intercept with a linear trend (β0 and β1 

                                                 
3 See also Gil-Alana and Hualde (2009) for an updated review of fractional integration and its applications in 
economic time series. 
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unknown). However, given the insignificancy of the time trend coefficients in the results 

obtained, we only report in the paper the results based on a model with an intercept.4 

 Another common framework for modelling volatility of stock returns is the 

AutoRegressive Conditionally Heteroscedastic (ARCH) model introduced by Engle (1982) 

and the GARCH (Generalized ARCH) of Bollerslev (1986). The basic idea of the ARCH 

model is that the shocks of an asset are serially uncorrelated but dependent and this can be 

described by a simple quadratic function of the lagged values. Let at be the shocks of an 

asset, then the GARCH(p,q) model assumes that   

∑ σβ+∑ εα+ω=σ
=

−
=

−
q

1j

2
jtj

p

1i

2
iti

2
t      (7)                                      

where αi and βj are non-negative constants and ω is a strictly positive constant. The log 

return series is given by ( )1logt t tx xε −=  while 2
tσ  is the time varying variance. 

The conditional variance is expressed as a linear function of the squared past values 

of the series. This specification is able to capture and reproduce several important 

characteristics of financial time series (Francq and Zakoian, 2010). These include succession 

of quiet and turbulence periods; autocorrelation of the squares but absence of autocorrelation 

of returns, and leptokurticity of the marginal distributions. 

In this paper, the persistence in volatility in the bull and bear periods is examined 

using the GARCH(1,1) model 

,...,2,1t,2
1t1

2
1t1

2
t =σβ+εα+ω=σ −−   (8)  

where ω > 0;  α > 0; β  ≥  0; and α + β < 1 for the full series and each of the subseries of the 

return for the nine indices. The unconditional variance is measured by ω / (1 – α – β) 

                                                 
4 Note that under Ho (4), equation (6) can be rewritten as ,ut1y t

*
t1

*
t0

*
t +β+β= where ;y)L1(y t

d*
t

o−=  

;1)L1(1 t
d*

t
o−=  and ;t)L1(t t

d*
t

o−=  and given that ut is supposed to be I(0), β0 and β1 can be estimated 

with OLS/GLS methods,t-values remaining valid in this context. 
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while the level of persistence is measured by (α + β), the closer this is to unity the more 

persistent the volatility of return is. The half-life volatility, a measure of the average time it 

takes the persistence to reduce by one – half is obtained by ln(0.5)/ln(α + β). The closer α + 

β is to 1, the larger the half – life of the volatility is. The unconditional standard deviation of 

the return series is measured by )1/( β−α−ω=σ , (Shittu, Yaya and Oguntade, 2009). 

 

3. Data and empirical results 

3.1 The data 

The data sets used in this work are monthly US, European and Asian open stock market 

indices. They are Standard & Poor (S&P), Nasdaq, Dow Jones for the US; FTSE, CAC 40 

and DAX for the European market and Nikkei, Hang Seng and STI for the Asian markets. 

The data were retrieved from Yahoo Finance website: 

http://finance.yahoo.com.  

[Insert Table 1 about here] 

Table 1 displays for each series the starting and the ending month in the sample 

period along with the sample size. The longest series is the one corresponding to the Dow 

Jones, with data starting in October 1928. The shortest one is the German DAX, with data 

starting in January 2000. All series end in February 2012. 

 
3.2 Persistence in the level and volatility of the indices 

We first examine the behavior of the whole samples. Table 2 displays the estimates of d (and 

the 95% confidence bands for the non-rejection values of d using Robinson, 1994) for each 

series in a model with an intercept (i.e., β1 = 0 in (6)) and supposing that the errors are white 

noise, Bloomfield (1973) and seasonal AR. The model of Bloomfield (1973) is a 

nonparametric approach to model I(0) processes that produces autocorrelations decaying 

exponentially as in the AR case. Thus, it approximates ARMA structures with a small 
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number of parameters. It can be seen in this table that the estimated values of d are very 

similar across the three specifications for the I(0) disturbances. We observe that the 

estimates are very close to 1. In fact, the unit root null hypothesis (i.e., d = 1) cannot be 

rejected for any type of disturbances for the cases of the DAX, the FTSE, the Nasdaq and 

the three Asian indices (Nikkei, Hang Seng and STI). For the remaining three indices (the 

CAC 40, the Dow Jones and the S&P500), the unit root cannot be rejected if the 

disturbances are autocorrelated throughout the model of Bloomfield (1973) but this 

hypothesis is rejected in favour of orders of integration above 1 in the other cases.  

[Insert Tables 2 and 3 about here] 

 Table 3 presents the same structure as Table 2 but now all series start at January 

2000. In doing so we get better comparisons across the series. The results here support the 

unit root hypothesis in all cases except for the STI with white noise and seasonal AR 

disturbances. These results are completely in line with those obtained in other works that 

find evidence of I(1) behavior in the stock market indices of different countries and across 

different sample periods even in the context of long range dependence models. (Aydogan 

and Booth, 1988; Lo, 1991; Hiemstra and Jones, 1997; etc.)5 

 Next we examine the volatility of the series by means of using the squared returns. 

Alternatively, using the absolute returns the results were similar.6 Table 4 displays the 

estimates of d and the 95% intervals in the nine volatility series. Here we obtain evidence of 

long memory volatility (i.e. d > 0) for the three types of disturbances (white noise, 

Bloomfield and AR) in the three series corresponding to the US market. The same evidence 

is reported for two of the Asian indices (Nikkei and STI) and also for the DAX. For the 

squared returns of the CAC we cannot reject the I(0) hypothesis if the disturbances are 

                                                 
5 The same evidence of I(1) behavior is obtained in many other works using standard unit root methods. 
6 Squared returns have been employed by Lobato and Savin (1998), Gil-Alana (2003), Cavalcante and Assaf 
(2004), Cotter (2005) and Elder and Jin (2007), whereas absolute returns have been used by Granger and Ding 
(1996), Bollerslev and Wright (2000), Sibbertsen (2004), Gil-Alana (2005) and others. 
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seasonally AR, and for the remaining two indices (FTSE and Hang Seng) the I(0) is never 

rejected. Performing the same type of analysis on the series starting in January 2000, in 

Table 5 we obtain more evidence of long memory and the I(0) hypothesis cannot be rejected 

only for the series corresponding to the three Asian markets if the disturbances follow the 

model of Bloomfield (1973). Once more, this is consistent with the results reported in other 

papers, finding evidence of long memory or long range dependence in the squared (and 

absolute) return series (Ding et al., 1993; Lobato and Savin,1998; Dufrenot et al., 2005; 

etc.). 

[Insert Tables 4 and 5 about here] 

 

3.3 Detection of bull and bear periods 

A framework to identify the bull and bear periods is given in Pagan and Sossounov (2003). 

We followed the procedures stated in the paper and this led to many cycles, where some of 

the peaks and troughs were not significant, that is, giving an increase or decrease less than 

20% from two successive troughs and peaks. Due to the constraint of available sample size 

to estimate the persistence and GARCH model, we removed the insignificant cycles and the 

results of the separation are presented in Table 6. 

[Insert Table 6 about here] 

 It is observed in this table that the cycles are very similar across all series, detecting 

two troughs and one peak throughout the sample in all cases and therefore two bear and two 

bull periods are obtained for each series. For the US market, the troughs take place at 

2002m10 and 2009m3 and the peak occurs at 2007m11 in the three series. For the European 

market, the dates differ in some cases. Thus, the first trough occurs at 2003m2 in the case of 

the FTSE and at 2003m4 for CAC and DAX; the second trough is at 2009m3 in third series, 
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however the peak takes place at 2007m11 for FTSE, at 2007m6 for CAC, and at 2008m1 for 

DAX. Slight differences also occur in the case of the Asian markets. 

 

3.4 Persistence and volatility in the bull and bear periods 
 
First, we focus on the level of each subseries. We present again the estimates of d and the 

95% confidence bands for the three types of disturbances (white noise, Bloomfield and 

seasonal AR) in a model with an intercept. The results are displayed in Table 7. Starting 

with the US market (Table 7a) the first noticeable feature is that the confidence intervals are 

very wide, which is clearly a consequence of the small sample sizes used in most of the 

subseries. We also notice that most of the estimates are in the interval (0, 1) implying 

fractional integration and mean reverting behavior. However, we cannot systematically say 

that the degree of persistence is higher or lower in the bull or bear periods. Thus, we observe 

that the orders of integration are higher in the second subsamples (bull period) compared 

with the first (bear), but in the third period (which is bear) the values again increase, 

decreasing in the final subsample (bull). Table 7b displays the results for the European 

indices. As in the previous cases, we do not observe any systematic pattern in case of the 

CAC. However, for the other two indices (FTSE and DAX) we observe an increase in the 

order of integration when going from a bear period to a bull period and this happens in all 

cases with uncorrelated and correlated disturbances. The same evidence is reported for two 

of the three Asian indices (Hang Seng and STI) but not for the Nikkei (Table 7c). 

 We can conclude from the results reported in Table 7 that higher degrees of 

dependence are detected in the bull periods compared with the bear ones only in the cases of 

FTSE, DAX, Hang Seng and STI. However, for the remaining indices (S&P500, Nasdaq, 

Dow Jones, CAC-40 and Nikkei) we do not observe any significant pattern. 

[Insert Tables 7 and 8 about here] 
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 The same analysis is conducted on the square returns series for the nine indices. 

Results are now displayed in Table 8. Similarly to Table 7 the intervals are very wide 

including the null of d = 0 in all cases. Starting again with the US market we observe an 

increase in the estimates of d in the bull periods in the cases of S&P500 and Dow Jones but 

not in the Nasdaq. This behavior is also observed in the DAX index and in some cases in the 

CAC-40 for the European market (Table 8b) and for the Hang Seng and STI indices as well 

in the Asian market (Table 8c). 

 As a general conclusion we find little evidence of any systematic pattern in the 

persistence in the level and in the volatility in bull and bear periods. If any, higher degrees of 

dependence are detected in both (level and volatility) in some indices during the bull 

periods. 

 

3.5 GARCH approach on the bull and bear periods 

The GARCH(1,1) model was estimated for all the subsamples and the full sample of stock 

returns for the nine indices in the three markets. The results are displayed in Table 9. 

Starting with the US market in Table 9a, and setting a benchmark of 9.0E-01 for the 

persistence, it can be observed from the Dow Jones stock that volatility in the bull periods 

are more persistent when compared with the bear period (this is indicated in the 2nd and 4th 

subsamples and the full sample). Also, the half-life indicated that it takes about 44 months 

and 7 months for the stock in the bull periods of Dow Jones to revert back to their mean 

levels. As expected the stronger the level of persistence, the longer it takes to revert back to 

the mean level. The same analysis is conducted on the squared return series of the nine 

indices. The results are also displayed in Table 9.  

[Insert Table 9 about here] 
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In the US market, volatility in the bull periods and the full sample were found to be 

persistent in the Dow Jones and the S&P500. In the European market, only the 2nd 

subsample (bull period) and the full sample showed persistence in volatility, while these 

results cannot be confirmed for the CAC 40 and the DAX.  Asian indices do not 

indicate any persistence except for the Hang Seng where the 1st and 2nd subseries were found 

to be highly persistent. 

 

4. Concluding comments 

In this article we have examined the degree of persistence in the level and volatility of 

several stock market indices in the US, Europe and Asia. For this purpose we have used 

methodologies based on fractional integration and GARCH approaches. The results indicate 

that the indices are nonstationary I(1) though fractional degrees of integration with values 

slightly below or above 1 are also plausible in some cases. We also obtain evidence of 

stationary long memory for the volatility measured in terms of the squared returns. In the 

paper we also detect the peaks and troughs in the sample for each series in order to detect 

bull and bear periods. The results are very consistent across the different indices, obtaining 

in all cases two troughs and one peak and thus, implying two bear and two bull periods. 

Then, we examine again persistence but this time for each subsample in each series. The 

results indicate that there is not a systematic pattern across all indices though in some of 

them we observe higher degrees of dependence in both the level and volatility in the bull 

periods. This is in fact the case of S&P500, Dow Jones, FTSE, Dax, Hang Seng and STI. 
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Tables and Figures 
 
 
Table 1: Data and sample sizes examined 

Market Index Starting month Ending month Sample size 

 
U.S. 

Nasdaq February 1971 February 2012 493 

S&P 500 January 1950 February 2012 746 

Dow Jones October 1928 February 2012 1001 

  
Europe 

CAC-40 March 1990 February 2012 264 

FTSE April 1984 February 2012 335 

DAX January 2000 February 2012 146 

  
Asia 

Nikkei January 1984 February 2012 338 

Hang Seng December 1986 February 2012 303 

STI December 1987 February 2012 291 
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Table 2: Estimates of d and 95% confidence intervals 
Whole simple White noise Bloomfield Seasonal AR 

CAC 1.085 (1.014, 1.176) 1.072 (0.951, 1.228) 1.083 (1.011, 1.176) 

DAX 1.056 (0.958, 1.195) 0.958 (0.802, 1.179) 1.061 (0.959, 1.205) 

FTSE 1.005 (0.940, 1.086) 0.973 (0.872, 1.104) 1.002 (0.937, 1.085) 

DOW JONES 1.037 (0.998, 1.082) 0.989 (0.935, 1.073) 1.042 (1.001, 1.090) 

S&P 500 1.061 (1.016, 1.114) 1.024 (0.952, 1.111) 1.050 (1.014, 1.114) 

NASDAQ 1.039 (0.979, 1.109) 1.024 (0.922, 1.148) 1.039 (0.984, 1.108) 

NIKKEI 1.029 (0.967, 1.109) 1.010 (0.909, 1.130) 1.029 (0.966, 1.111) 

HANG SENG 1.039 (0.949, 1.150) 0.870 (0.742, 1.076) 1.016 (0.929, 1.126) 

STI 1.064 (0.984, 1.161) 1.048 (0.879, 1.260) 1.068 (0.986, 1.170) 
   In bold: Evidence of unit roots at the 5% level. 

 
 

Table 3: Estimates of d and 95% confidence bands with all series starting at 
2000m1 
146 observations White noise Bloomfield Seasonal AR 

CAC 1.067 (0.975, 1.195) 1.022 (0.868, 1.226) 1.078 (0.971, 1.213) 

DAX 1.056 (0.958, 1.195) 0.958 (0.802, 1.179) 1.061 (0.959, 1.205) 

FTSE 1.022 (0.934, 1.144) 1.009 (0.867, 1.211) 1.027 (0.935, 1.154) 

DOW JONES 1.037 (0.933, 1.180) 0.889 (0.699, 1.149) 1.051 (0.943, 1.195) 

S&P 500 1.071 (0.969, 1.210) 0.946 (0.771, 1.172) 1.071 (0.969, 1.212) 

NASDAQ 0.996 (0.907, 1.121) 0.947 (0.809, 1.122) 1.003 (0.919, 1.118) 

NIKKEI 1.091 (0.998, 1.221) 1.071 (0.909, 1.291) 1.093 (0.997, 1.224) 

HANG SENG 1.095 (0.974, 1.263) 0.871 (0.708, 1.108) 1.078 (0.964, 1.242) 

STI 1.110 (1.009, 1.245) 1.081 (0.881, 1.351) 1.111 (1.009, 1.249) 
 In bold: Evidence of unit roots at the 5% level. 
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Table 4: Estimates of d and 95% confidence intervals 
Whole simple White noise Bloomfield Seasonal AR 

CAC 0.161 (0.091, 0.251) 0.182 (0.061, 0.339) 0.056 (-0.022, 0.159) 

DAX 0.106 (0.029, 0.223) 0.258 (0.091, 0.520) 0.104 (0.021, 0.212) 

FTSE 0.044 (-0.017, 0.123) 0.038 (-0.057, 0.177) 0.046 (-0.017, 0.122) 

DOW JONES 0.184 (0.161, 0.211) 0.319 (0.281, 0.387) 0.169 (0.142, 0.191) 

S&P 500 0.134 (0.091, 0.184) 0.136 (0.073, 0.235) 0.194 (0.138, 0.263) 

NASDAQ 0.187 (0.145, 0.239) 0.282 (0.196, 0.369) 0.179 (0.135, 0.233) 

NIKKEI 0.167 (0.098, 0.254) 0.133 (0.009, 0.283) 0.167 (0.099, 0.253) 

HANG SENG 0.008 (-0.055, 0.091) 0.021 (-0.093, 0.164) 0.004 (-0.066, 0.087) 

STI 0.193 (0.137, 0.265) 0.263 (0.164, 0.386) 0.135 (0.092, 0.186) 
 In bold: Evidence of long memory (d > 0) at the 5% level. 

 
 

Table 5: Estimates of d and 95% confidence bands with all series starting at   
2000m1 

146 observations White noise Bloomfield Seasonal AR 

CAC 0.166 (0.086, 0.283) 0.236 (0.072, 0.455) 0.171 (0.084, 0.293) 

DAX 0.106 (0.027, 0.212) 0.258 (0.091, 0.520) 0.104 (0.021, 0.212) 

FTSE 0.175 (0.089, 0.291) 0.206 (0.042, 0.441) 0.175 (0.091, 0.290) 

DOW JONES 0.174 (0.087, 0.295) 0.155 (0.012, 0.364) 0.172 (0.084, 0.293) 

S&P 500 0.241 (0.149, 0.363) 0.173 (0.026, 0.368) 0.241 (0.151, 0.368) 

NASDAQ 0.268 (0.195, 0.371) 0.285 (0.163, 0.463) 0.282 (0.198, 0.404) 

NIKKEI 0.095 (0.003, 0.224) 0.044 (-0.091, 0.264) 0.096 (0.005, 0.224) 

HANG SENG 0.212 (0.114, 0.356) 0.072 (-0.056, 0.250) 0.205 (0.104, 0.350) 

STI 0.114 (0.023, 0.243) 0.052 (-0.077, 0.237) 0.115 (0.025, 0.243) 
         In bold: Evidence of long memory (d > 0) at the 5% level. 
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Table 6a: US Bull and bear markets phases 

S&P 1st (bear) 2000m1 – 2002m10 

S&P  2nd (bull) 2002m11 – 2007m11 

S&P  3rd (bear) 2007m12 – 2009m3 

S&P  4th  (bull) 2009m4 – 2012m2 

Nasdaq 1st (bear) 2000m1 – 2002m10 

Nasdaq 2nd (bull) 2002m11 – 2007m11 

Nasdaq 3rd (bear) 2007m12 – 2009m3 

Nasdaq 4th  (bull) 2009m4 – 2012m2 

Dow Jones 1st (bear) 2000m1 – 2002m10 

Dow Jones 2nd (bull) 2002m11 – 2007m11 

Dow Jones 3rd (bear) 2007m12 – 2009m3 

Dow Jones 4th  (bull) 2009m4 – 2012m2 

 
 
 
 

Table 6b: European Bull and Bear Markets phases 
FTSE 1st (bear) 2000m1 – 2003m2 

FTSE 2nd (bull) 2003m3 – 2007m11 

FTSE 3rd (bear) 2007m12 – 2009m3 

FTSE 4th  (bull) 2009m4 – 2012m2 

CAC 1st (bear) 2000m1 – 2003m4 

CAC 2nd (bull) 2003m5 – 2007m6 

CAC 3rd (bear) 2007m7 – 2009m3 

CAC 4th  (bull) 2009m4 – 2012m2 

DAX 1st (bear) 2000m1 – 2003m4 

DAX 2nd (bull) 2003m5 – 2008m1 

DAX 3rd (bear) 2008m2 – 2009m3 

DAX 4th  (bull) 2009m4 – 2012m2 
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Table 6c: Asian Bull and Bear Markets phases 
Nikkei 1st (bear) 2000m1 – 2003m5 

Nikkei 2nd (bull) 2003m6 – 2007m7 

Nikkei 3rd (bear) 2007m8 – 2009m3 

Nikkei 4th  (bull) 2009m4 – 2012m2 

Hang Seng 1st (bear) 2000m1 – 2003m4 

Hang Seng 2nd (bull) 2003m5 – 2007m11 

Hang Seng 3rd (bear) 2007m12 – 2009m3 

Hang Seng 4th  (bull) 2009m4 – 2012m2 

STI 1st (bear) 2000m1 – 2003m4 

STI 2nd (bull) 2003m5 – 2007m11 

STI 3rd (bear) 2007m12 – 2009m3 

STI 4th  (bull) 2009m4 – 2012m2 
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Table 7a: Estimates of d and 95% confidence intervals in the bull and bear periods 
US market 

 White noise Bloomfield Seasonal AR 

S&P 1st (bear) 0.682  (0.539,  
1.004) 

0.579  (0.252,  0.874) 0.673  (0.544,  
1.017) S&P 2nd (bull) 0.831  (0.695,  

1.194) 
0.644  (0.521,  0.817) 0.819  (0.674,  

1.233) S&P 3rd (bear) 0.909  (0.462,  
1.823) 

xxx 1.251  (0.503,  
1.167) S&P 4th  (bull) 0.692  (0.468,  

1.283) 
0.448  (0.084,  1.693) 0.693  (0.471,  

1.307) 
Nasdaq 1st (bear) 0.737  (0.601,  

1.067) 
0.597  (0.344,  0.847) 0.672  (0.514,  

1.017) Nasdaq 2nd (bull) 0.763  (0.566,  
1.180) 

0.558  (0.376,  1.209) 0.827  (0.543,  
1.244) Nasdaq 3rd (bear) 0.861  (0.398,  

1.671) 
xxx 0.774  (0.341,  

1.894) Nasdaq 4th (bull) 0.605  (0.455,  
1.281) 

0.493  (0.174,  1.883) 0.615  (0.464,  
1.397) 

Dow Jones 1st (bear) 0.487  (0.229,  
1.252) 

0.091  (-0.522,  
1.371) 

0.554  (0.324,  
1.233) Dow Jones 2nd (bull) 0.873  (0.732,  

1.110) 
0.744  (0.517,  1.033) 0.881  (0.723,  

1.144) Dow Jones 3rd 
(bear) 

0.794  (0.377,  
1.447) 

xxx 1.092  (0.584,  
1.666) Dow Jones 4th (bull) 0.641  (0.471,  

1.242) 
0.416  (0.072,  1.544) 0.643  (0.481,  

1.266)  In bold: Evidence of unit roots at the 5% level. 
 
 

Table 7b: Estimates of d and 95% confidence intervals in the bull and bear periods 
European market 

 White noise Bloomfield Seasonal AR 

CAC 1st (bear) 0.868  (0.742,  1.083) 0.822  (0.621,  1.144) 0.894  (0.776,  1.104) 

CAC 2nd (bull) 0.782  (0.675,  1.045) 0.645  (0.433,  0.907) 0.784  (0.662,  1.004) 

CAC 3rd (bear) 0.768  (0.533,  1.319) xxx 0.754  (0.563,  1.288) 

CAC 4th (bull) 0.961  (0.664,  1.386) 0.541  (-0.171,  1.293) 0.937  (0.632,  1.364) 

FTSE 1st (bear) 0.676  (0.562,  0.997) 0.723  (0.491,  0.992) 0.703  (0.594,  1.017) 

FTSE 2nd (bull) 0.718  (0.649,  0.909) 0.645  (0.501,  0.764) 0.711  (0.644,  0.907) 

FTSE 3rd (bear) 0.654  (0.329,  1.056) xxx 0.733  (0.401,  1.394) 

FTSE 4th (bull) 0.828  (0.504,  1.263) 0.420  (0.012,  1.263) 0.866  (0.499,  1.332) 

DAX 1st (bear) 0.833  (0.706,  1.089) 0.674  (0.469,  0.931) 0.849  (0.721,  1.093) 

DAX 2nd (bull) 0.913  (0.797,  1.170) 0.783  (0.651,  0.973) 0.921  (0.806,  1.204) 

DAX 3rd (bear) 0.832  (0.411,  1.317) xxx xxx 

DAX 4th (bull) 0.845  (0.521,  1.396) 0.582  (0.254,  1.197) 0.873  (0.481,  1.422) 
      In bold: Evidence of unit roots at the 5% level. 
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Table 7c: Estimates of d and 95% confidence intervals in the bull and bear periods 
Asian market 

 White noise Bloomfield Seasonal AR 

Nikkei 1st (bear) 0.773  (0.636,  
1.114) 

0.537  (0.233,  0.951) 0.774  (0.633,  
1.110) Nikkei 2nd (bull) 0.968  (0.770,  

1.244) 
0.827  (0.541,  1.644) 0.966  (0.772,  

1.244) Nikkei 3rd (bear) 0.856  (0.542,  
1.463) 

xxx 0.881  (0.585,  
1.524) Nikkei 4th (bull) 0.764  (0.464,  1.144 0.342  (-0.277,  

1.552) 
0.767  (0.452,  

1.152) 
Hang Seng 1st (bear) 0.668  (0.557,  

1.083) 
0.513  (0.351,  0.644) 0.633  (0.522,  

1.068) Hang Seng 2nd (bull) 1.505  (1.211,  
1.813) 

1.587  (0.217,  2.610) 1.914  (1.561,  
2.210) Hang Seng 3rd 

(bear) 
0.715  (0.352,  

1.504) 
xxx 0.548  (0.224,  

1.632) Hang Seng 4th (bull) 0.997  (0.566,  
1.371) 

0.897  (0.031,  2.177) 0.934  (0.553,  
1.314) 

STI 1st (bear) 0.529  (0.404,  
0.971) 

0.394  (0.066,  1.173) 0.484  (0.381,  
0.971) STI 2nd (bull) 1.005  (0.824,  

1.271) 
0.858  (0.382,  1.374) 1.034  (0.892,  

1.264) STI 3rd (bear) 0.951  (0.514,  
1.802) 

xxx 0.692  (0.342,  
1.383) STI 4th (bull) 0.975  (0.474,  

1.322) 
1.093  (0.171,  2.389) 0.831  (0.434,  

1.255)       In bold: Evidence of unit roots at the 5% level. 
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Table 8a: Estimates of d and 95% confidence intervals in the squared returns for the 
bull and bear periods.  US market 

 White noise Bloomfield Seasonal AR 

S&P 1st (bear) -0.437  (-0.814,  
0.078) 

xxx -0.463  (-0.851, 
0.019) S&P 2nd (bull) 0.077   (-0.036,  

0.253) 
0.004  (-0.177, 0.224) 0.084  (-0.034,  

0.255) S&P 3rd (bear) -0.043  (-0.457,  
0.572) 

xxx -0.084  (-0.387,  
0.742) S&P 4th  (bull) -0.028  (-0.337,  

0.319) 
-0.521  (-0.741,  

0.307) 
0.055  (-0.336,  

0.327) 
Nasdaq 1st (bear) 0.044  (-0.138,  

0.337) 
-0.052  (-0.893,  

0.462) 
0.146  (-0.077,  

0.469) Nasdaq 2nd (bull) 0.119  (-0.044,  
0.364) 

-0.166  (-0.417,  
0.122) 

0.122  (-0.034,  
0.374) Nasdaq 3rd (bear) 0.374  (-0.177,  

1.174) 
xxx 0.426  (-0.244,  

1.571) Nasdaq 4th (bull) -0.048  (-0.376,  
0.292) 

-0.387  (-0.817,  
0.343) 

-0.054  (-0.297,  
0.291) 

Dow Jones 1st 
(bear) 

-0.287  (-0.651,  
0.362) 

-0.512  (-0.817,  
0.808) 

-0.107  (-0.466,  
0.504) Dow Jones 2nd 

(bull) 
0.076  (-0.044,  

0.246) 
0.053  (-0.134,  

0.303) 
0.062  (-0.053,  

0.227) Dow Jones 3rd 
(bear) 

-0.337  (-0.717,  
0.208) 

xxx -0.268  (-0.621, 
0.104) Dow Jones 4th 

(bull) 
-0.133  (-0.472,  

0.118) 
-0.554  (-1.007,  

0.234) 
-0.133  (-0.488,  

0.117)  In bold: Evidence of unit roots at the 5% level. 
 
 

Table 8b: Estimates of d and 95% confidence intervals in the squared returns for bull 
and bear periods. European market 

 White noise Bloomfield Seasonal AR 

CAC 1st (bear) 0.072  (-0.094,  0.337) 0.074  (-0.381,  0.811) 0.217  (0.044,  0.453) 

CAC 2nd (bull) 0.086  (-0.081,  0.332) 0.066  (-0.422,  0.717) -0.007  (-0.247,  0.286) 

CAC 3rd (bear) -0.115  (-0.609,  0.174) xxx -0.207  (-0.555,  0.197) 

CAC 4th (bull) 0.094  (-0.199,  0.974) -0.511  (-0.907,  0.033) 0.081  (-0.206,  1.073) 

FTSE 1st (bear) 0.166  (-0.014,  0.432) 0.097  (-0.533,  0.544) 0.236  (0.051,  0.535) 

FTSE 2nd (bull) -0.074  (-0.026,  0.141) -0.038  (-0.351,  0.474) -0.064  (-0.226,  0.176) 

FTSE 3rd (bear) -0.219  (-0.664,  0.513) xxx -0.211  (-0.634,  0.741) 

FTSE 4th (bull) -0.088  (-0.297,  0.222) -0.217  (-0.661,  0.244) -0.088  (-0.297,  0.206) 

DAX 1st (bear) 0.047  (-0.116,  0.293) 0.098  (-0.334,  0.783) 0.126  (-0.024,  0.327) 

DAX 2nd (bull) 0.064  (-0.071,  0.266) 0.104  (-0.381,  0.455) 0.262  (-0.074,  0.464) 

DAX 3rd (bear) -0.221  (-0.814,  0.314) xxx xxx 

DAX 4th (bull) -0.008  (-0.194,  0.283) -0.108  (-0.552,  0.402) -0.036  (-0.254,  0.275) 
      In bold: Evidence of unit roots at the 5% level. 
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Table 8c: Estimates of d and 95% confidence intervals in the squared returns for the 
bull and bear periods.  Asian market 

 White noise Bloomfield Seasonal AR 

Nikkei 1st (bear) 0.122  (-0.144,  
0.552) 

-0.453  (-0.808,  
0.117) 

0.094  (-0.186,  
0.547) Nikkei 2nd (bull) 0.005  (-0.164,  

0.226) 
-0.054  (-0.662,  

0.527) 
-0.017  (-0.417,  

0.236) Nikkei 3rd (bear) -0.128  (-0.442,  
0.363) 

xxx -0.184  (-0.704,  
0.336) Nikkei 4th (bull) -0.216  (-0.409,  

0.083 
-0.417  (-1.184,  

0.151) 
-0.165  (-0.406,  

0.136) 
Hang Seng 1st 

(bear) 
-0.072  (-0.234,  

0.174) 
-0.197  (-0.633,  

0.174) 
-0.088  (-0.246,  

0.164) Hang Seng 2nd 
(bull) 

0.681  (0.398,  1.014) -0.515  (-0.707,  
0.607) 

0.681  (0.394,  1.043) 

Hang Seng 3rd 
(bear) 

-0.284  (-0.711,  
0.504) 

xxx -0.117  (-0.841,  
0.778) Hang Seng 4th 

(bull) 
0.224  (-0.014,  

0.641) 
-0.222  (-0.602,  

0.264) 
0.294  (0.022,   

0.723) 
STI 1st (bear) -0.233  (-0.481,  

0.117) 
xxx -0.253  (-0.544,  

0.138) STI 2nd (bull) 0.074  (-0.057,  
0.275) 

0.153  (-0.118,  
0.517) 

0.074  (-0.054,  
0.274) STI 3rd (bear) -0.148  (-0.629,  

0.553) 
xxx -0.108  (-0.444,  

0.446) STI 4th (bull) 0.185  (-0.004,  
0.417) 

0.317  (-0.142,  
1.192) 

0.233  (0.046,  0.465) 
      In bold: Evidence of unit roots at the 5% level. 
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Table 9a: Estimates of persistence and volatility in the return series of US indices 
 

 
 
  

 
sub- 

samples 

GARCH estimates 

( ), ,ω α β  

Persistence 

α β+  
unconditional. 

Std. dev. 
Half-life 

Dow Jones 1st (bear) (1.44E-04, 1.59E-03, 7.20E-01) 7.22E-01 5.17E-04 2.12 

 2nd (bull) (4.81E-07, 2.03E-02, 9.64E-01) 9.84E-01 3.06E-05 43.8 

 3rd (bear) (9.00E-04, 2.76E-02, 4.11E-02) 6.87E-02 9.66E-04 0.259 

 4th  (bull) (2.16E-05, 5.00E-05, 9.00E-01) 9.00E-01 2.16E-04 6.58 

 
full 

sample 
(1.49E-05, 1.81E-01, 7.94E-01) 9.75E-01 2.44E-02 27.4 

S & P 500 1st (bear) (1.45E-04, 8.24E-04, 7.34E-01) 7.35E-01 5.47E-04 2.25 

 2nd (bull) (2.20E-08, 3.24E-02, 9.51E-01) 9.83E-01 1.33E-06 41.4 

 3rd (bear) (1.09E-03, 1.13E-01, 2.09E-02) 1.34E-01 1.26E-03 0.345 

 4th  (bull) (4.96E-04, 2.12E-03, 5.30E-02) 5.51E-02 5.25E-04 0.239 

 
full 

sample 
(1.22E-05, 2.29E-01, 7.63E-01) 9.92E-01 3.91E-02 86.3 

Nasdaq 1st (bear) (3.89E-04, 9.99E-02, 7.49E-01) 8.49E-01 2.57E-03 4.23 

 2nd (bull) (4.83E-04, 9.84E-02, 2.64E-03) 1.01E-01 5.37E-04 0.302 

 3rd (bear) (1.49E-03, 1.07E-02, 7.10E-03) 1.78E-02 1.52E-03 0.172 

 4th  (bull) (2.22E-04, 4.94E-04, 7.08E-01) 7.08E-01 7.62E-04 2.01 

 
full 

sample 
(5.47E-05, 2.18E-01, 7.23E-01) 9.41E-01 3.04E-02 11.4 
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Table 9b: Estimates of persistence and volatility in the returns of European indices 
 
 

 
 

sub- 
samples 

GARCH estimates 

( ), ,ω α β  

Persistence 

α β+  
unconditional. 

Std. dev. 
Half-life 

FTSE 1st (bear) (1.40E-04, 1.78E-01, 5.29E-01) 7.07E-01 4.78E-04 2 

 2nd (bull) (4.25E-06, 2.70E-04, 9.62E-01) 9.62E-01 1.13E-04 18 

 3rd (bear) (8.04E-04, 1.38E-02, 5.43E-02) 6.81E-02 8.63E-04 0.258 

 4th  (bull) (1.23E-04, 9.24E-03, 7.44E-01) 7.53E-01 4.98E-04 2.45 

 
full 

sample 
(2.94E-05, 1.97E-01, 7.21E-01) 9.18E-01 1.89E-02 8.10 

CAC 40 1st (bear) (3.24E-04, 1.87E-01, 4.49E-01) 6.36E-01 8.90E-04 1.53 

 2nd (bull) (3.70E-05, 4.00E-01, 4.37E-01) 8.37E-01 2.27E-04 3.90 

 3rd (bear) (7.66E-04, 3.28E-03, 2.57E-01) 2.60E-01 1.04E-03 0.515 

 4th  (bull) (1.70E-05, 7.05E-03, 9.66E-01) 9.73E-01 6.31E-04 25.4 

 
full 

sample 
(5.88E-05, 2.40E-01, 6.82E-01) 9.22E-01 2.75E-02 8.54 

DAX 1st (bear) (3.49E-04, 3.93E-01, 4.43E-01) 8.36E-01 2.13E-03 3.87 

 2nd (bull) (7.41E-05, 1.73E-01, 5.99E-01) 7.72E-01 3.25E-04 2.68 

 3rd (bear) (1.26E-03, 3.50E-02, 2.04E-02) 5.54E-02 1.33E-03 0.240 

 4th  (bull) (2.98E-05, 1.87E-03, 9.57E-01) 9.59E-01 7.25E-04 16.5 

 
full 

sample 
(1.54E-04, 2.30E-01, 6.08E-01) 8.38E-01 3.08E-02 3.92 



 28

 
Table 9c: Estimates of persistence and volatility in the returns of Asian indices 
 

 
sub- 

samples 

GARCH estimates 

( ), ,ω α β  

Persistence 

α β+  
unconditional. 

Std. dev. 
Half-life 

Nikkei 1st (bear) (6.65E-04, 6.39E-02, 4.19E-02) 1.06E-01 2.73E-02 0.309 

 2nd (bull) (4.60E-05, 4.40E-04, 8.81E-01) 8.81E-01 1.97E-02 5.48 

 3rd (bear) (1.40E-03, 7.77E-04, 1.73E-02) 1.81E-02 3.78E-02 0.173 

 4th  (bull) (4.38E-04, 2.06E-03, 4.27E-01) 4.29E-01 2.77E-02 0.819 

 
full 

sample 
(2.44E-04, 2.26E-01, 4.23E-01) 6.49E-01 2.64E-02 1.60 

Hang Seng 1st (bear) (5.90E-07, 3.75E-02, 9.57E-01) 9.94E-01 1.01E-02 120 

 2nd (bull) (2.99E-07, 2.50E-02, 9.65E-01) 9.90E-01 5.34E-03 65.8 

 3rd (bear) (1.59E-03, 4.54E-04, 1.67E-01) 1.68E-01 4.37E-02 0.388 

 4th  (bull) (1.61E-04, 1.63E-01, 4.88E-01) 6.51E-01 2.15E-02 1.61 

 
full 

sample 
(1.78E-04, 2.97E-01, 5.79E-01) 8.76E-01 3.79E-02 5.25 

STI 1st (bear) (9.77E-04, 3.61E-04, 1.00E-01) 1.01E-01 3.30E-02 0.302 

 2nd (bull) (4.49E-05, 9.44E-02, 6.88E-01) 7.83E-01 1.44E-02 2.83 

 3rd (bear) (1.73E-03, 1.74E-02, 4.59E-02) 6.33E-02 4.29E-02 0.251 

 4th  (bull) (1.96E-04, 4.06E-01, 3.15E-01) 7.20E-01 2.65E-02 2.11 

 
full 

sample 
(3.11E-05, 1.56E-01, 8.11E-01) 9.67E-01 3.09E-02 20.9 


