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ABSTRACT

This paper deals with the analysis of the volatility persistence and the leverage
effect across six non-ferrous metals spot and futures series in India. Data for
aluminium, copper, lead, nickel, zinc and tin were collected from 1% January, 2009
to 30" June, 2012. Volatility persistence was determined throughout the ARCH /
GARCH class of models. The leverage effect was tested using TARCH and EGARCH
models. Out of the twelve non-ferrous metals series including both spot and futures,
TGARCH captures asymmetric effects in seven series and EGARCH captures leverage
effects in ten series. Other long memory features of the data were also examined.
Testing fractional integration our results show that the series are I(1) but the
squared returns display long memory features.
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1 Introduction

The major non-ferrous metals such as aluminiumpenplead, nickel, zinc and tin are
important sources of raw materials for the majooitynanufacturing and mining industries.

The growing global demand for non-ferrous metalsrecent years has been mainly
attributed to the imbalances in global productiold @onsumption, rapid urbanization and
industrialization. In emerging economies such am&hindia, Brazil, Russia and South
Africa, considerable increase in speculative ai#isiin this market has led to elevated
levels of market uncertainty and price volatility.

The literature on the volatility forecast in ass®rkets can be classified into two main
approaches i.e. the option pricing implied volgtiimodels, and time series based on
conditional volatility models. However, it shoulde noted that the implied volatility
approach has a number of drawbacks, such as itgappty for European options, not
suitable for long term forecast and unrealistic lieg volatility. Thus, in this paper we
employ the second approach based on a time sexieg\Work.

Our motivation behind this work is that the vdlgtiestimates allow us to investigate the
empirical regularities, such as fat-tailedness\aidtility persistence. It is well documented
(Bollerslev, Engle and Nelson, 2003) that fat-@ess in asset markets is intimately related
to so-called volatility clustering, which describd® phenomena in which large changes in
asset prices, of either sign, tend to be followgddrge changes, and small changes are
followed by small changes, reflecting market irfegities and persistence. The persistent
behaviour in the returns and in the associatedtilibfameasured in terms of the squared

returns will also be examined by means of long nrgmmodels.

! Some authors use the denomination “base metal@adsof “non-ferrous metal” as non-ferrous metabal
comprises gold, platinum and silver. Throughous faper we will employ “non-ferrous metal” as refeg to
the above-mentioned six materials.



Examining about two and half decades of data, &tuand Gilbert (1995, 1996) affirm
that metal markets are highly volatile and timeyirag in nature. These authors also suggest
that speculative activities are the major driverstwort term price volatility, which is very
short lived. But for non-ferrous metals, the risknfluenced by the physical availability of
metal, the actions of demand and supply and thkienfe of the financial markets.
McMillan and Speight (2001) extend the study of igxtii and Gilbert (1995) to examine
non-ferrous metals price volatility through a coment analysis in order to exploit the
higher-frequency daily data. They analyzed dailfiement prices of six non-ferrous metals
traded on the London Metals Exchange (LME), as d¢lmafy Brunetti and Gilbert (1995),
and extended to the end of 2000. By using a vara@nthe GARCH model which
decomposed volatility into long-run and a short-mamponents, the study suggested that
non-ferrous metals prices are not only exposedotatiity persistence but also exhibited
some degree of long memory, which are ultimatelti@hary and mean-reverting. Long
memory behaviour was also found in Panas (200¥)gudata from the LME market. In
particular, he found some evidence of strong depecelin the aluminium and copper return
series. Other articles that have also investigited memory in metals are Panas and Ninni
(2010), Arouri et al. (2012) and Cochran et al.120

Watkins and McAleer (2004) apply a time varyindatiity model on metals series such
as aluminium and copper. Using LME daily data thesthors examine the effectiveness of
the AR(1)-GARCH(1,1) model. In another study, Dgoknd Lenihan (2005) with data
from the LME cash market and the forward marketdéad and zinc evaluate the efficacy of
different time series methods in forecasting. Thesults show that the ARIMA model
provides the best forecasting in nine out of thetegin cases studied. Donnell and Rayner

(2008) use Bayesian methods and examine the timyengavolatility on the LME Index. It



is found that ARCH(3) and GARCH(1,1) models arensigant in estimating the volatility
of the indices.

Kumar and Singh (2008) examine the time varyiniatdy, seasonality and risk-return
relationships in a GARCH-in-mean framework for thelian commodity market, and
Mahalakshmi et al. (2012¢xamine the commodity derivatives behaviour in bhéian
market also using ARCH/GARCH models. Using dat&€omposite Commaodity Derivative
Index of Multi Commodity Exchange (MCX) the GARCH,{) model was selected.

The specific aims in this paper are the followirigst, to identify which time series
volatility model is applicable in each of the simmprecious metals for both spot and futures
prices using secondary data; second, to understendmpact of information asymmetry
(leverage effect) on the volatility of each of theries; and third, to understand the inter-
correlation between the various metal prices botthé spot and futures series. In addition,
long memory and other features of persistencebgikkxamined in the paper.

To achieve these objectives we use the GARCH dgasasodels. In order to identify the
best fit and its volatility persistence, we use AR@nd GARCH models. To test for the
presence of asymmetric volatility TARCH and EGARG@tddels will be employed. Finally,
long memory I(d) models will also be examined teahfor the persistence in the returns,
and in the volatility processes measured in terftBeosquared returns.

The remainder of the paper is organized as folldyextion 2 describes the data and the
methodology; Section 3 presents the empirical figdi based on GARCH, TGARCH,

EGARCH and I(d) models; Section 4 summarises thie firadings and conclusions.

2. Data and methodology

2a. Nature and sour ces of the data



Futures and spot series for six non-ferrous metalsaluminium, copper, lead, nickel, zinc
and tin are examined in this study. For the futyygse series, we use daily near month
contract series closing prices of MCX-futures. Bpet market closing prices prevailing in
Mumbai are also used in this study. We have cateéclata from the MCX websftefrom
January T, 2009 to June 39 2011. Across the series a day-wise data matehiaccise has
been carried out so as to bring each series ietonitdel building framework. We use a total
of 1052 observations of spot and futures pricegHersix non-precious metals. These prices
are converted to returns by means of first diffeesnof the log-transformed data, i.e;,=R

In(Yy) — In(Yt.1), where Y is the corresponding price series.

2b. Methodology and models considered

Engle (1982) designed the time series volatilitydedpin his AutoRegressive Conditional
Heteroskedasticity (ARCH), assuming that the ungal error variance is constant, and
the conditional variance is assumed to depend strpalizations of the error process. Later
on, Bollerslev (1986) and Taylor (1986) generalistkd ARCH model to generate the
GARCH model. There are several other methods tdystbe volatility persistence and
spillover effects across financial series, butARCH/GARCH models seem to be the most
popular ones. Furthermore, the EGARCH model progpdsg Nelson (1991) and the
TARCH model of Zokian (1994) and Glosten, Jagarerathnd Rankle (1993) are used to
investigate the presence of leverage effects. Wedlyodescribe these models.

ARCH mode: This model proposed by Engle (1982) suggests tmatvariance of the
residuals at time t depends on the squared erronstdrom past periods. The three
specifications of the ARCH model, i.e., the corahtl mean equation, the conditional

variance equation and the conditional error digtrdn are presented below.

2 www.mcexindia.com



The mean equation of the ARCH model is:
Yi=a+ B'Xt + U, u,/Q,~N (0, h), (1)
where X is a kx1 vector of explanatory variables g a kx1 vector of coefficients. The

error term uis supposed to be i.i.d. with|@; ~ N(O, h), whereQ; is the information set.

The variance equation of the ARCH(P) model is:

P
ht =vo + _Zl\/jutz—j- (2)
J:

Thus, the squared errors follow a heteroskedas®R81A(1,1) process. The AR root
which governs the persistence of volatility shotksthe sum of the parameters of the
variance equation. Generally when this root is velgse to 1 the shocks die out rather
slowly.

GARCH (p, ) model: The mean equation is the same as in the ARCH moegl(1). The

variance equation of the GARCH (p, q) is given bhader:
p q )
h=y+> 00+ yul;, 3)
i=1 j=1

where h is the conditional variance that depends on it$ dagged values and lagged
squared errors.

In the empirical application carried out in thdéldaing section the orders of the ARCH
and GARCH models are selected on the basis of te #he SIC and the Hannan-Quinn
(HQ) criteria. After the selection of the optimabdel we need to check some assumptions
about the distributional pattern of the model. Tdmgnostics tested the following
hypotheses:

I) The model should be homoscedastic i.e. it shbeléree from ARCH effects — LM tests;
ii) it should be free from autocorrelation — LjuBgx — Q statistics, and

iii) it should follow a Normal distribution - JargeBera statistic.



GARCH models enforce the symmetric response chtiity to positive and negative
shocks. This is due to the fact that the condifioraiance in the GARCH equation is
dependent upon the magnitude of the lagged squemieuals but not on their signs.
However, it has been argued that a negative sleotikaly to cause a more volatile return
series than when compared to an equivalent shogka news. In the case of asset returns,
such asymmetries are attributed to leverage effddie presence of such effects is also
examined in the paper. In order to study the impdctjood news or bad news on the
volatility of the metal series we use two asymnoetariants of the GARCH models, i.e. the
TARCH and the EGARCH models.

Threshold GARCH (TGARCH) model: TGARCH coefficients evaluate the asymmetries
between the effects of good and bad news. Thenagiaquation of the T-GARCH model is

specified as:

TARCH(p,g): hy=a+ Eéi hi + % Y, utz_j + _% ?, utz_j Dt-j (4)
i=1 =i 71 ]

In this model, we introduce a dummy variablg,2dopting the values 0 and 1. {f & O,

D; takes the value 1, otherwise,;Dis equal to 0. So, good news and bad news have a

different volatility impact on the series. The degof good news impact is measuredypy

while the degree of bad news impact is measuregtby. If ¢> O, it is concluded that there

is asymmetry, while ifp= 0, the impact of the news is symmetric.

Exponential GARCH (EGARCH) model: Asymmetry of different types of shocks is of no

use until we are in the position to determine thmuhating shocks and their impact on the

series. It is therefore essential to find which ohéhe effects dominates in the market. The

Exponential GARCH model ensures that the conditiorariance is non-negative. It

captures the magnitude and sign effects of shaotgraus captures the effect of asymmetric

returns on the conditional volatility. The variaresuation of the EGARCH model is:



Ui —j u
EGARCHR):  logh) = o+ Ly, |t e S | e San ©)
(hi-j) (he-j) i=1

In the above equation, if the signsypfind¢; are both positive, it means that the impact
of bad and good news is the same, i.e., it is syimendf the sign ofy; is positive and that of
¢; is negative, this means that the impact of badsnewgreater in increasing the volatility as
compared to the good news of the commodity sareesjt is asymmetric.

In the final part of the manuscript we look at thersistence of the series by using a
different approach based on the concept of fraatiortegration. The idea is that the series
(either the level or the volatility, measured innte of the squared returns) may be highly
persistent, requiring a number of differences to @d(0) stationarity process, and this
number of differences may not necessarily be aygartvalue but a fractional one. We can

consider the following model,

Yt = Bth + X, t=12.., (6)
where y is the observed series, ig a (kx1) vector of deterministic terms that nisey an
intercept (z= 1) or an intercept with a linear trend (i.e. =41,t)"), and x are the regression
errors, which follow an i) model of the form:

Q-0 = u, t = 12.. (7)
where L is the lag operatod can be any real number, andisi supposed to be 1(0),

including thus potentially ARMA structures. Notettihe polynomial (1—I9)in equation (7)

can be expressed in terms of its binomial expansich that, for all real:

a-0f= Ty = fm(ﬂ)" U=1-qgL+9@D2
j=0 j=o\J 2

and thus:

d@-1

(1—|-)dXt = Xy = dxyq + t-2 ~



In this contextd plays a crucial role, since it will be an indicatd the degree of
dependence of the series. Thus, the higher theevafud is, the higher the level of
association will be between the observations. RBseEe withd > 0 in (7) display the
property of “long memory”, so-named because ofdtieng degree of association between
observations far distant in time. These processesrelated with the ARCH/GARCH
models in the sense that fractional integratiordpoes nonstationarity as long as d is equal
to or higher than 0.5 and this is due to the faat the variance of the partial sums increases
in magnitude with d so as to be non-summable. Thosh (fractional integration and
ARCH) deal with the second moment properties ofsiges under examination. Moreover,
using fractional integration in the squared (orcdiie) returns appears as an alternative
approach when modelling the volatility process. Thethodology used in the paper to
estimate the fractional differencing parameter @sdad on the Whittle function (an

approximation to the likelihood function) in thefuency domain (Dahlhaus, 1989).

3.  Empirical results

Table 1 reports summary statistics for the dailyre series of both spot and futures for
aluminium, copper, lead, nickel, zinc and tin.sltobserved that the daily mean returns and
the standard deviations for all spot series ar@dow be greater than their corresponding
futures series. The daily spot return of lead,oleltd by nickel and zinc, has the highest
standard deviation, while aluminium has the leastiation in the daily spot return.
Aluminium has a daily mean return of 0.04% andamdard deviation of 1.46% for the spot
series compared with 0.02% and 0.127% for its spoading futures series respectively.
Both tin and zinc have approximately the same mreturn (0.07%), but zinc has a higher
standard deviation (2.19%) than tin (1.76%). Theures return series distributions of

copper, aluminium and tin are found to be posijivetewed while lead, nickel and zinc

10



futures return series distributions are negatigglgwed. Kurtosis is the highest (15.420) for
lead spot return and the least (4.81) for zincregueturn. On the other hand, there is strong
evidence from the histograms and the Jarque-Bat@tsts that the returns are not normally
distributed.

<Insert Table1 & Figures1and 2>

Figure 1 displays the plots of the six non-ferroostal series. Here we see that all log
price series of the non-ferrous metal move in & wamilar way. Furthermore, the plot of
each return series shows that heteroscedasticiéy ismherent part of all the non-ferrous
metal series. The daily return series (displayeBigure 2) exhibit a great deal of volatility.
Across all the sample metals, the largest shockise@eturn process took place towards the
end of 2011 coinciding with the turmoil in Europdarancial markets. Also, in general, the
volatility in silver and copper appear to be morenounced than in the zinc and lead return
series.

To support the descriptive statistics and graphess of persistence, a formal statistical
test is attempted. Initially a simple AR(1) procesth an intercept was estimated in order to
determine the best fit linear mean function forleatthe series,

Yi=C+B Ye1+ &, t=1, 2,... (8)

The significance of this equation was then esthblil and the error term of each mean
equation was converted into the particular residegl metal series. Before running the
ARCH models, we conducted several serial correladnd heteroscadasticity tests. To
examine the presence of serial correlation, we wcted the Breusch-Godfrey Serial
Correlation LM Test. Furthermore, we conducted AROW tests that examine the
presence of homoscedasticity across the series.téfteresults confirmed that all series

display heteroscedasticity in the variance distrdyu
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The residual generated series is used as the topbuild the ARCH and GARCH
models. Table 1 reveals through the Jarque-Betstatahat the residuals do not follow a
Normal distribution. The Lagrange Multiplier testslicate that there are no ARCH effects,
and the assumption of serial correlation is reppdteough the Ljung Box Q —statistic.
Finally, all the metal series satisfy the assunmpiiotheir respective GARCH models for the
Normal distribution. Based on this, we could codeluhat symmetry is a characteristic
when measuring the volatility of the metal seridsowever, other more general
GARCH(p,q) specifications should also be considered

<Insert Tables2 and 3>

Following standard approaches, it is stated that4um of the ARCH and GARCH
coefficients in the variance equation determines dbgree of volatility persistence in the
selected models. Table 3 reveals that for lead spoés, volatility persistence is detected
under a Student-t-distribution, while for all thiner series a Normal (Gaussian) one is used
for the conditional distribution of the error terioreover, except for lead spot and zinc
futures, the sum of the coefficients is smallenthabeing especially close to 1 in the cases
of aluminium, lead, tin and zinc.

There might be some reasons to explain the difte® in the volatility of the non-ferrous
metal series. The speculative activities for skemin gains centred on commodities such as
lead spot and zinc futures have been the main soofanvestment in the commodity
market. However, there is a need for in-depth swth discover the reasons for the different
degrees of volatility persistence observed in thiad

<Insert Table4 here>
The results of the TGARCH model are presented ibleld. They clearly reveal
asymmetry between good news and bad news for allfutures series except lead and

nickel. That means that except for the lead an#étehiall other futures metal series are

12



experiencing a far greater level of volatility dwwethe negative news shock when compared
with a positive news shock of the same magnitudeth@ contrary, all the spot price series
except aluminium, nickel and zinc are asymmetrievéitheless, the results indicate no
significant asymmetric behaviour in the nickel spotl the futures series at conventional
statistical significance levels. If one chooses, é&xample, to express the asymmetric
behaviour in the nickel spot and futures series, résult ascertains that the probability of
committing Type | errors are about 95 percent ahgé&cent respectively. Similarly for the
aluminium spot series, lead futures and zinc spoes the probability that the series possess
asymmetric behaviour is about 70 percent, 13 péread 9 percent of Type | errors
respectively. For the rest of the series the pritibabf Type | error is below 5 percent.

Furthermore, an attempt has been made to examenextent of the impact of good news
and bad news on the selected series. From theatetinT-GARCH model it is clear that
good news has an impact of 0.0112 (the value otdedficients of the ARCH component)
and bad news has an impact of -0.0021 (the diffexeralue of the coefficient of the ARCH
component and the threshold component) on alumiriidares series but such an impact is
statistically insignificant for the aluminium spséries. However, different impacts of bad
news (-0.0852 and -0.0755) and good news (0.00d3&061) are observed for the copper
series irrespective of the spot and futures. Amamong all the metals, the tin spot is
experiencing the greatest level of volatility asyatm.

<Insert Table 5 about here>

The EGARCH estimates presented in Table 5 revedldll the series except nickel and
zinc futures are exposed to leverage effects. Tiedns, negative news has a far greater
impact on the volatility of most of the metal seriecompared to the positive news of the
same magnitude. Thus, negative news has a dongretffect over positive news in the non-

ferrous metal price series. However, as the EGAR@ el assumes the second variance
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term is non-negative (absolute) this enables tga and the magnitude to have separate
effects on the volatility, thus showing the leveragifects more prominently when compared
to the TGARCH model.
<Insert Table 6 about here>

Once the TARCH and EGARCH models have been rumlbthe non-ferrous metals
series, the best model is selected on the badiseoAIC and SIC. (See Table 6). For all
series, except tin spot, only one model is fountécsignificant at conventional statistical
levels.

Across Tables 7 — 10 we employ a model of the fgiven by the equations (6) and (7)
with z = (1,t), t> 1, (0, O) otherwise, i.e.,

Ve =Bo * Bt + xi,  @-L)x =y, t = 12, 9)
assuming first that the disturbance ternswa white noise process, and then considering the
possibility of a weakly autocorrelated process. Huog latter we use a non-parametric
approach due to Bloomfield (1973) that approximad®dMA structures with a reduced
number of parameters.

Tables 7 and 8 display the estimated values adsgectively for the two cases of
white noise and autocorrelated disturbances onoipprices series. We consider the three
standard cases examined in the literature, i.e.c#ise of no regressors (i.f,=p1 =0a
priori in equation (9)), an intercedo(unknown, ang, = Oa priori), and an intercept with
a linear time trendp and B, unknown). Together with the estimate of the fi@wal
differencing parameter, we also present their epoading 95% confidence bands.

<Insert Tables 7 and 8 about here>
We see in these two tables that most of the ettonealues of d are within the unit root
interval, suggesting that the I(1) hypothesis camorejected in the spot and futures series.

Evidence of mean reversion (d < 1) is only obtaimedsome cases with white noise

14



disturbances when including deterministic termsyéwer, in the most realistic case of
autocorrelated errors, the unit root null hypoth&sinnot be rejected in any single case. This
Is consistent with the results obtained in manyepthnarkets across the world (Lo, 1991,
Hiemstra and Jones, 1997; etc.)
<Insert Tables 9 and 10 about here>

Tables 9 and 10 are similar to Tables 7 and &dmused on the squared returns, which
are used as proxies for the volatility. We obsehat practically all the estimated values of
d are above 0 implying long memory and corrobogathrus the high degree of dependence
in the volatility processes obtained in our pregisasults. Again, this is consistent with the
results reported in other markets across the w{ohg, Granger and Engle, 1993;

Bollerslev and Wright, 2000; etc.).

4.  Conclusion

The main objective of this research was to applessd time series volatility models on
various Indian non-ferrous metals. Data for siXed#nt non-ferrous metals were collected
from the MCX website.

We can summarize the main results as follows:

(i) the symmetric volatility analysis using a GARGhbdel shows that all the non-ferrous
metal series exhibit a high degree of volatilitygpgtence. This result was also corroborated
by means of long memory and fractionally integratthniques, obtaining estimates of the
differencing parameter that were significantly abd@vin all the squared return series. The
GARCH (1, 1) model was selected for aluminium spod futures, copper futures, copper
spot, lead futures, nickel futures and tin spotesemwhile a GARCH (1, 2) was the best

fitted model for nickel spot, tin futures and zsot.
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(ii) testing the asymmetric volatility by using TARI and EGARCH models, out of the
twelve non-ferrous metals, TGARCH captures asymmeffects in only seven series and
EGARCH captures a leverage effect in ten.

The results of this study can be used to prethetvolatility of prices in non-ferrous
metals by the Indian manufacturing sector. Thiseaesh can be further extended to
understand the short term volatility using highgfrency data, which can be of interest to

traders investing in the commodities market.
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Tablesand Figures

Table 1: Descriptive statistics of daily spot and futures return series for non-ferrous

Note: * indicates the optimal model for tt@responding series based on selection criterion

19

metals
Aluminium Copper Lead Nickle Tin Zinc
Statistic Spot Future Spot] Future Spat Futire SpotFuture Spot Future Spot Future
Mean 0.0004| 0.0002 0.0010 0.00Q9 0.00p8 0.0p06 06.000.0004| 0.0007 0.000¢ 0.0007  0.0005
Std. Dev. 0.0146 0.0127Y 0.0184 0.01%2 0.0250 0.019%0229 | 0.0189] 0.017 0.016Pp 0.0219 0.0169
Skewness -0.10§ 0.005p 0.18%8 0.11B9 -0.6658 -0)j3064.3533| -0.290| 0.257¢ 0.5571 -0.7383 -0.123
Kurtosis 5.7038| 5.6787 5.539%2 5.09714 15.4p0 6.2878.4717 | 5.7390| 7.3929 12.10D 15403 4.8134
Jarque-Bera 322.43 | 314.23 | 288.67| 194.90 | 6839.3 | 489.53 | 1857.7 | 343.35| 857.51| 3681.3 | 6837.7 | 146.66
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000)
Sum Sq. Dev.| 0.224 0.1703 0.3567  0.2433 0.6566 000.4 0.5497| 0.3757 0.3253 0.3003 0.5089  0.2991
Note: Figures in parentheses indicate p-valueespanding to Jarque-Bera statistics.
Table 2. Symmetric GARCH model selection
Series Model Name AIC SBC HQIC
Aluminium Futures GARCH 1,1* -5.97599 -5.95276  9%/19
o GARCH 1,1* -5.71093 -5.68770 -5.70213
Aluminium Spot
GARCH 1,2 -5.75395 -5.72607 -5.74339
Copper Futures GARCH 1,1* -5.67286 -5.64963 -5.@640
Copper Spot GARCH 1,1* -5.31494 -5.291711 -5.30614
Lead Futures GARCH 1,1* -5.13694 -5.11368 -5.12812
Lead Spot GARCH 1,1* -5.35038 -5.5271p -5.44158
Nickel Futures GARCH 1,1* -5.23647 -5.21324 -5.227¢
_ GARCH 1,1 -4.94620 -4.92296 -4.93739
Nickel Spot
GARCH 1,2* -4.95484 -4.92697 -4.94428
_ GARCH 1,1 -5.45038 -5.427185 -5.44158
Tin Futures I
GARCH 1,2* -5.53571 -5.50783 -5.52515%
. GARCH 1,1* -5.35058 -5.32735 -5.34178
Tin Spot
GARCH 1,2 -5.35076 -5.32288 -5.34020
) GARCH 1,1* -5.42403 -5.40080 -5.41523
Zinc Futures
GARCH 1,2 -5.44328 -5.41540 -5.43272
_ GARCH 1,1 -5.07315 -5.04992 -5.0643%
Zinc Spot
GARCH 1,2* -5.08700 -5.05912 -5.07644



Table 3: Optimized GARCH estimatesfor volatility persistence

Volatility
Metal Series Model Name RESID(-1)"p RESID(-2)"p GAR-1) | persistence
= (vi+ di)
Alurminium Futures GARCH 1,1 -0.008 1.004 0.996
Spot GARCH 1,1 0.097 -0.105 1.006 0.998
Cobber Futures GARCH 1,1 0.052 0.925 0.977
PP Spot GARCH 1,1 0.046 0.934 0.980
Lead Futures GARCH 1,1 0.052 0.94 0.992
Spot (t-Dist) [ GARCH 1,1 0.718 0.384 1.027
Nickel Futures GARCH 1,1 0.044 0.933 0.977
Spot GARCH 1,2 0.174 -0.115 0.921 0.981
Tin Futures GARCH 1,2 0.278 -0.266 0.986 0.998
Spot GARCH 1,1 0.108 0.778 0.886
Zinc Futures GARCH 1,2 0.09 -0.092 1.003 1.001
Spot GARCH 1,2 0.219 -0.149 0.926 0.996
Table 4: Optimized TGARCH estimatesfor volatility asymmetry examination
Model Name RESID(-1)"2*(RESID(-1)<g) °°°d | Bad Decision
News | News
Aluminium Futures
P - 2
GARCH (1,1)* 0.0133 (0.000) 0.0112 -0.0021 Asymmetry
Aluminium Spot oo NO significant
GARCH (1,1) 0.0021  (0.6997) 0.2218 0.2198 Asymmetry
Copper Futures i it
GARCH (1,1) * 0.0865  (0.000) 0.00183 -0.08%2 Asymmetry
Copper Spot i it
GARCH (1,1) * 0.0816 (0.000) 0.0061 -0.0755 Asymmetry
Lead Futures . No significant
GARCH (1,1) 0.0166 (0.1272) 0.0446  0.028 Asymmetry
Lead Spot
GARCH (1,1) * 0.0009 (0.0014) 0.0031 0.002L4 Asymmetry
Nickel Futures s A4~ No significant
GARCH (1,1) -0.0009 (0.9531) 0.0445 0.0436 Asymmetry
Nickel Spot i b No significant
GARCH (1.2) 0.0171 (0.3186) 0.2902 0.2732 Asymmetry
Tin Futures ]
GARCH (1,2) * 0.0184 (0.000) 0.757Y 0.7393 Asymmetry
Tin Spot \
GARCH (1,1) * 0.1173 (0.000) 0.0304 -0.0869 Asymmetry
Zinc Futures 5
GARCH (1,1) * 0.0122 (0.001) 0.114 0.1027 Asymmetry
Zinc Spot i No significant
GARCH (1,2) 0.0151 (0.089) 0.376/  0.3609 Asymmetry

Note: Figures in parentheses indicate p-valuesamdicates significant at 5% or less probabilifyType | error.
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Table5: Optimized EGARCH estimatesfor volatility asymmetry examination

EGARCH (1,2) =Ln(B) =- ao +yi(-s/ Y1)+ ya(E-o/ Vhiea) +@i(€-a/ Vi) + 8In(hey)

Metal ) w =
series % S84 E Estimates of the Optimized EGARCH model
Selected L c E S| og
Model = 0 .=
Aluminium Ln(ht) =- 0.018 - 0.01E-1/ vht-1)- 0.014(et-1/ vht-1) + 0.997 In(ht-1)
Futures -0.003 | -0.025| -ve
GARCH (1,1) (0.000) (0.000) (0.001) (0.000)
Aluminium Ln(ht) =0.006 -0.243t-1/ vht-1)- 0.253(et-1/ vht-1) + 1.000 In(ht-1)
Spot -0.503 | -0.003| -ve
GARCH (1.1 (0.325) (0.000) (0.000) (0.000)
Copper Futures Ln(ht) = 0.262 + 0.092t—1/ Vht—1)— 0.085(et-1/ vht-1) + 0.978 In(ht-1)
GARCH (1,1) | -0.176 | 0.006| -ve
(0.000) (0.000) (0.000) (0.000)
Copper Spot Ln(ht) =- 0.216 + 0.06zt—1/ vht-1)- 0.093(et—1/ vht-1) + 0.979 In(ht-1)
GARCH (1,1) | -0.155 | -0.031| -ve
(0.000) (0.000) (0.000) (0.000
Lead Futures Ln(ht) = 0.170 + 0.11%t-1/ Vht—1)- 0.022(et-1/ vht-1) + 0.989 In(ht-1)
GARCH (1,1) | -0.137 | 0.093| -ve
(0.000) (0.000) (0.015) (0.000
Lead Spot Ln(ht) =- 0.115 + 0.03<4t-1/ vht-1)- 0.065(et—1/ vht-1) + 0.998 In(ht-1)
GARCH (1,1) | -0.099 | -0.031| -ve
(0.000) (0.000) (0.000) (0.000)
Nickel Futures ve | Ln(t) =-0.241 +0.108(-1/ ht-1)- 0.004(et-1/ vht-1) + 0.979 In(ht-1)
-0.104 | 0.096
GARCH (1.1) (NS) (0.000) (0.000) (0.746) (0.000)
Nickel Spot Ln(ht) =- 0.276 + 0.31%-1/ Vht-1)- 0.157(et-1/ \ht-1) + 0.031(et-2/ \ht-1) + 0.980In(ht-
-0.505 | 0.191| -
GARCH (1,2) ve (0.000) (0.000) (0.000) (0.041) (0.000)
Tin Futures Ln(ht) =- 0.007 + 0.364(-1/ vht-1)- 0.368(st-1/ Vht-1) — 0.021(et-2/ vht-1) +0.999 In(ht-
GARCH (1,2) | -0.711 | -0.025| -ve
(0.000) (0.000) (0.000) (0.000) (0.000)
Tin Spot Ln(ht) = 1.114 + 0.16%t—1/ Vht-1) — 0.085(st—1/ vht-1) + 0.879 In(ht-1)
GARCH (1,1) | -0.248 | 0.078| -ve
(0.000) (0.000) (0.000) (0.000)
Zinc Futures -ve | Ln(ht) =-0.216 + (177t-1/ vht-1) — 0.031(et—1/ Vht-1) + 0.986 In(ht-1)
GARCH (1,1) | -0.189 | 0.103 NS
(0.000) (0.000) (0.018) (0.000)
Zinc Spot Ln(ht) =- 0.228 + 0.34%¢-1/ vht-1)-0.152(et-1/ \ht-1) -0.0037(et—2/ Vht-1)+ 0.989 In(ht-
GARCH (1,2) | -0534 | 0.23 -ve

(0.000)  (0.000) (0.000) (0.003)

Note: Figures in parentheses indicate the levslgfificance for the corresponding coefficients
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Table6: Asymmetric model comparison

Series Model Name AIC SIC HQIC
Aluminium Futures TARCH 1,1 | -5.96936 -5.94148| -5.9588
Aluminium Spot TARCH 1,2| -5.7375p-5.70502| -5.72523
Copper Futures EGARCH 1/1-5.69365| -5.66577| -5.68309
Copper Spot EGARCH 1,1-5.34177| -5.31389| -5.33121
Lead Futures EGARCH 1,1-5.14543| -5.11755| -5.13487
Lead spot EGARCH 1’1-5.35038 -5.52715| -5.44158
Nickel Futures EGARCH 1,1-5.23376| -5.20588| -5.2232
Nickel Spot EGARCH 1,2 -4.94175| -4.90922| -4.92943
Tin Futures TARCH 1,2| -5.582485.54996| -5.57016
TARCH 1,1 | -5.3601| -5.3322R-5.34954

Tin Spot
EGARCH 1,1| -5.35105| -5.32317| -5.34049
Zinc Futures TARCH 1,2| -5.43541-5.40289| -5.42309
Zinc Spot EGARCH 1,2 -5.06931| -5.03679| -5.05699
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Table 7: Estimates of d and 95% confidence intervals with white noise distur bances

Spot series Future series
No regressors | An intercept Alinear trend  Norsgoes | An intercept A linear trend
Aluminium 0.99 (0.86, 1.04)| 0.90(0.87,0.93) 0.90 (0.873D.9 0.99 (0.96, 1.04)] 0.99 (0.95, 1.08)  0.99 (01963)
Cupper 1.00 (0.96, 1.05)| 0.88(0.85,0.93) 0.89 (0.8630.9 1.00 (0.96, 1.05)] 0.98 (0.94, 1.02)  0.98 (01082)
Lead 1.01 (0.97,1.05)| 0.90(0.87,0.93) 0.90 (0.873p.9 1.01 (0.97,1.05)] 1.02 (0.97,1.07)  1.02 (0XG7)
Nickle 1.01 (0.97,1.05)| 0.92(0.88,0.96) 0.93 (0.886Y.9 1.00 (0.96, 1.05)] 1.01 (0.97,1.06) 1.01 (0106)
Tin 1.00 (0.96, 1.06)| 0.98 (0.94, 1.03) 0.98 (0.943)L.0 1.00 (0.96, 1.04) 0.95 (0.92, 0.99)  0.95 (0(29)
zZinc 1.01(0.97,1.05)| 0.87(0.83,0.91) 0.87(0.841p.9 1.00 (0.96, 1.05)| 1.00 (0.96, 1.05)  1.00 (01965)

In bold the 95% confidence intervals of the estedatalues of d.

Table 8: Estimates of d and 95% confidence intervals with autocorreated disturbances

Spot series Future series
No regressors | An intercept Alinear trend  Norsgoes | An intercept A linear trend
Aluminium 0.98 (1.02, 1.06)| 0.99 (0.93,1.09) 0.99 (0.93911.0 0.98 (0.92, 1.07)| 0.99 (0.92,1.07) 0.99 (01Q7)
Cupper 1.01 (0.94, 1.06)| 0.96 (0.88,1.04) 0.96 (0.904)1.0 0.99 (0.93,1.08)| 0.99 (0.92, 1.09)  0.99 (01988)
Lead 1.01 (0.93, 1.06)| 0.93(0.85,1.02) 0.93 (0.852)L.0 0.99 (0.93,1.07)] 0.99 (0.91, 1.07)  0.99 (0X07)
Nickle 1.01(0.93, 1.06)| 0.93(0.87,1.01) 0.93 (0.871)L.0 0.98 (0.92,1.06)] 1.00 (0.92, 1.08)  0.99 (01908)
Tin 0.99 (0.94,1.08)| 0.99(0.93,1.07) 0.99 (0.937)L.0 1.00 (0.93,1.08)] 0.98(0.92,1.04) 0.98 (01924)
zZinc 1.00 (0.93, 1.07)| 0.96 (0.89, 1.03)  0.96 (0.893)L.0 0.99 (0.93,1.07)] 0.96 (0.89, 1.04)  0.96 (0106)

In bold the 95% confidence intervals of the estedatalues of d.

Table 9: Estimates of d and 95% confidence intervalswith white noise disturbances

Spot series (squared returns)

Futures seriesrésdjoeturns)

No regressors | An intercept A linear trend No regoes | An intercept A linear trend
Aluminium 0.19 (0.15, 0.25)| 0.18 (0.13,0.23) 0.17 (0.111p.2 0.08 (0.05, 0.11)] 0.06 (0.04,0.10)  0.00 (-0MA5)
Cupper 0.16 (0.12,0.19)| 0.14 (0.11,0.17) 0.12 (0.095p.1 0.16 (0.12,0.19)] 0.14 (0.11,0.17) 0.12 (0M2E)
Lead 0.21 (0.16, 0.19)| 0.21(0.16,0.27) 0.21 (0.167D.2 0.08 (0.05,0.12)] 0.07 (0.04,0.11)  0.04 (-0MA8)
Nickle 0.18 (0.14,0.21)| 0.17(0.13,0.21) 0.17(0.131p.2 0.17 (0.14,0.21)] 0.15(0.12,0.19) 0.14 (0QL08)
Tin 0.10 (0.06, 0.14)| 0.09 (0.06, 0.13)  0.09 (0.063p.1 0.09 (0.06, 0.13) 0.08 (0.05, 0.12)  0.05 (0MAQ)
zZinc 0.20(0.15, 0.25)|  0.20 (0.15, 0.23)  0.20 (0.155p.2 0.10 (0.07, 0.14)| 0.09 (0.06, 0.12)  0.03 (-0MQ7)

In bold the 95% confidence intervals of the estadatalues of d.

Table 10; Estimates of d and 95% confidence intervalswith autocorrelated disturbances

Spot series (squared returns)

Futures seriesrésdjoeturns)

No regressors | An intercept A linear trend No regoes | An intercept A linear trend
Aluminium 0.10(0.04, 0.15)| 0.07 (0.03,0.13)  0.02 (0.009pD.0 0.14 (0.10, 0.20)| 0.11 (0.07,0.16)  0.03 (-0MAN)
Cupper 0.22(0.17,0.27)| 0.18(0.14,0.23) 0.17 (0.122D.2 0.22 (0.18,0.28) 0.19 (0.14, 0.24)  0.17 (00L23)
Lead 0.04 (0.00, 0.10)| 0.04 (0.00, 0.10)  0.04 (0.000p.1 0.16 (0.11, 0.23)| 0.14 (0.09, 0.19)  0.09 (0MA7)
Nickle 0.16 (0.10, 0.23)| 0.14 (0.10,0.19)  0.14 (0.100P.2 0.21 (0.16, 0.27) 0.17 (0.11,0.22)  0.15 (0OLRD)
Tin 0.21(0.15,0.28)| 0.19 (0.13,0.26) 0.21 (0.139p.2 0.12 (0.06, 0.17)| 0.10 (0.05, 0.16)  0.02 (-0MIL)
zZinc 0.06 (0.00, 0.11)| 0.06 (0.00,0.11)  0.06 (0.001p.1 0.21 (0.16, 0.28) 0.17 (0.13,0.28)  0.08 (0M27)

In bold the 95% confidence intervals of the estedatalues of d.
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Figure 1: Graph of all Metal series (L og Values) of the data used for analysis
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Figure 2: plot of daily spot and futuresreturn distribution

RAS RLS RNS
10 2 15
10
05 !
! 05
v 0 00
00
1 -05
-05 -10
-2
-15
T T -10 F T T T -3 T T T T -20 F T T T
[ 2 R VA I} LI VA BT T VA I T VAR [ VA I A B R [ VA T I VA B R VR I
2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012
RTS RZS RAF RCF
2 08 08
1 04 04
0 }- 00 00
1 -04 04
T T -2 T T T -08 T T T 08 L T T T
(I R VA I} [T VA BT VI VA B I VAR T VA R I 2 B VA I T VA I I I 2 R I VAR R
2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012
RLF RNF RTF RZF
08 15 08
o4 10
04
05
00
00 00
-04
-05
08 -04
B 10
T T -12 r T T T -15 T T T -08 r T T T
(I R VA I} [T VA B VI VA R I VAR T VA I I 2 B VA I T VA I I I 2 I I VAR R
2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012 2009 2010 2011 2012

25



