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ABSTRACT 

 
This paper deals with the analysis of the volatility persistence and the leverage 
effect across six non-ferrous metals spot and futures series in India. Data for 
aluminium, copper, lead, nickel, zinc and tin were collected from 1st January, 2009 
to 30th June, 2012. Volatility persistence was determined throughout the ARCH / 
GARCH class of models. The leverage effect was tested using TARCH and EGARCH 
models. Out of the twelve non-ferrous metals series including both spot and futures, 
TGARCH captures asymmetric effects in seven series and EGARCH captures leverage 
effects in ten series. Other long memory features of the data were also examined. 
Testing fractional integration our results show that the series are I(1) but the 
squared returns display long memory features. 
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1. Introduction 

The major non-ferrous metals such as aluminium, copper, lead, nickel, zinc and tin are 

important sources of raw materials for the majority of manufacturing and mining industries.1 

The growing global demand for non-ferrous metals in recent years has been mainly 

attributed to the imbalances in global production and consumption, rapid urbanization and 

industrialization. In emerging economies such as China, India, Brazil, Russia and South 

Africa, considerable increase in speculative activities in this market has led to elevated 

levels of market uncertainty and price volatility.  

 The literature on the volatility forecast in asset markets can be classified into two main 

approaches i.e. the option pricing implied volatility models, and time series based on 

conditional volatility models. However, it should be noted that the implied volatility 

approach has a number of drawbacks, such as its applicability for European options, not 

suitable for long term forecast and unrealistic implied volatility. Thus, in this paper we 

employ the second approach based on a time series framework.  

 Our motivation behind this work is that the volatility estimates allow us to investigate the 

empirical regularities, such as fat-tailedness and volatility persistence. It is well documented 

(Bollerslev, Engle and Nelson, 2003) that fat-tailedness in asset markets is intimately related 

to so-called volatility clustering, which describes the phenomena in which large changes in 

asset prices, of either sign, tend to be followed by large changes, and small changes are 

followed by small changes, reflecting market irregularities and persistence. The persistent 

behaviour in the returns and in the associated volatility, measured in terms of the squared 

returns will also be examined by means of long memory models. 

  

                                                 
1 Some authors use the denomination “base metal” instead of “non-ferrous metal” as non-ferrous metal also 
comprises gold, platinum and silver. Throughout this paper we will employ “non-ferrous metal” as referring to 
the above-mentioned six materials. 
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 Examining about two and half decades of data, Brunetti and Gilbert (1995, 1996) affirm 

that metal markets are highly volatile and time varying in nature. These authors also suggest 

that speculative activities are the major drivers of short term price volatility, which is very 

short lived. But for non-ferrous metals, the risk is influenced by the physical availability of 

metal, the actions of demand and supply and the influence of the financial markets. 

McMillan and Speight (2001) extend the study of Brunetti and Gilbert (1995) to examine 

non-ferrous metals price volatility through a component analysis in order to exploit the 

higher-frequency daily data. They analyzed daily settlement prices of six non-ferrous metals 

traded on the London Metals Exchange (LME), as compiled by Brunetti and Gilbert (1995), 

and extended to the end of 2000. By using a variant of the GARCH model which 

decomposed volatility into long-run and a short-run components, the study suggested that 

non-ferrous metals prices are not only exposed to volatility persistence but also exhibited 

some degree of long memory, which are ultimately stationary and mean-reverting. Long 

memory behaviour was also found in Panas (2001) using data from the LME market. In 

particular, he found some evidence of strong dependence in the aluminium and copper return 

series. Other articles that have also investigated long memory in metals are Panas and Ninni 

(2010), Arouri et al. (2012) and Cochran et al. (2012). 

 Watkins and McAleer (2004) apply a time varying volatility model on metals series such 

as aluminium and copper. Using LME daily data these authors examine the effectiveness of 

the AR(1)-GARCH(1,1) model. In another study, Dooley and Lenihan (2005) with data 

from the LME cash market and the forward market for lead and zinc evaluate the efficacy of 

different time series methods in forecasting. Their results show that the ARIMA model 

provides the best forecasting in nine out of the sixteen cases studied. Donnell and Rayner 

(2008) use Bayesian methods and examine the time varying volatility on the LME Index. It 
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is found that ARCH(3) and GARCH(1,1) models are significant in estimating the volatility 

of the indices. 

 Kumar and Singh (2008) examine the time varying volatility, seasonality and risk-return 

relationships in a GARCH-in-mean framework for the Indian commodity market, and 

Mahalakshmi et al. (2012) examine the commodity derivatives behaviour in the Indian 

market also using ARCH/GARCH models. Using data of Composite Commodity Derivative 

Index of Multi Commodity Exchange (MCX) the GARCH (1,1) model was selected.   

 The specific aims in this paper are the following: first, to identify which time series 

volatility model is applicable in each of the six non-precious metals for both spot and futures 

prices using secondary data; second, to understand the impact of information asymmetry 

(leverage effect) on the volatility of each of the series; and third, to understand the inter-

correlation between the various metal prices both in the spot and futures series. In addition, 

long memory and other features of persistence will be examined in the paper.  

 To achieve these objectives we use the GARCH class of models. In order to identify the 

best fit and its volatility persistence, we use ARCH and GARCH models. To test for the 

presence of asymmetric volatility TARCH and EGARCH models will be employed. Finally, 

long memory I(d) models will also be examined to check for the persistence in the returns, 

and in the volatility processes measured in terms of the squared returns.  

 The remainder of the paper is organized as follows: Section 2 describes the data and the 

methodology; Section 3 presents the empirical findings based on GARCH, TGARCH, 

EGARCH and I(d) models; Section 4 summarises the main findings and conclusions. 

 

2. Data and methodology 

2a. Nature and sources of the data 
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Futures and spot series for six non-ferrous metals viz. aluminium, copper, lead, nickel, zinc 

and tin are examined in this study. For the futures price series, we use daily near month 

contract series closing prices of MCX-futures. The spot market closing prices prevailing in 

Mumbai are also used in this study. We have collected data from the MCX website2, from 

January 1st, 2009 to June 30th, 2011. Across the series a day-wise data matching exercise has 

been carried out so as to bring each series into the model building framework. We use a total 

of 1052 observations of spot and futures prices for the six non-precious metals. These prices 

are converted to returns by means of first differences of the log-transformed data, i.e., Rt = 

ln(Yt) – ln(Yt-1), where Yt is the corresponding price series. 

 

2b. Methodology and models considered 

Engle (1982) designed the time series volatility model, in his AutoRegressive Conditional 

Heteroskedasticity (ARCH), assuming that the unconditional error variance is constant, and 

the conditional variance is assumed to depend on past realizations of the error process. Later 

on, Bollerslev (1986) and Taylor (1986) generalised the ARCH model to generate the 

GARCH model. There are several other methods to study the volatility persistence and 

spillover effects across financial series, but the ARCH/GARCH models seem to be the most 

popular ones. Furthermore, the EGARCH model proposed by Nelson (1991) and the 

TARCH model of Zokian (1994) and Glosten, Jagannathan and Rankle (1993) are used to 

investigate the presence of leverage effects. We briefly describe these models. 

ARCH model: This model proposed by Engle (1982) suggests that the variance of the 

residuals at time t depends on the squared error terms from past periods. The three 

specifications of the ARCH model, i.e., the conditional mean equation, the conditional 

variance equation and the conditional error distribution are presented below.  

                                                 
2 www.mcxindia.com 
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 The mean equation of the ARCH model is: 

      tt
'

t uXY +β+α= ,          ttu Ω/ ~N (0, ht),   (1) 

where Xt is a k×1 vector of explanatory variables and β is a k×1 vector of coefficients. The 

error term ut is supposed to be i.i.d. with ut|Ωt ~ N(0, ht), where Ωt is the information set. 

The variance equation of the ARCH(P) model is:  

      2
jt

P

1j
j0t uh −

=
∑ γ+γ= .     (2) 

 Thus, the squared errors follow a heteroskedastic ARMA(1,1) process. The AR root 

which governs the persistence of volatility shocks is the sum of the parameters of the 

variance equation. Generally when this root is very close to 1 the shocks die out rather 

slowly. 

GARCH (p, q) model: The mean equation is the same as in the ARCH model, i.e., (1). The 

variance equation of the GARCH (p, q) is given hereunder: 

            ∑ ∑
= =

−− ++=
p

i

q

j
jtjitit uhh

1 1

2
0 γδγ ,     (3) 

where ht is the conditional variance that depends on its own lagged values and lagged 

squared errors.  

 In the empirical application carried out in the following section the orders of the ARCH 

and GARCH models are selected on the basis of the AIC, the SIC and the Hannan-Quinn 

(HQ) criteria. After the selection of the optimal model we need to check some assumptions 

about the distributional pattern of the model. The diagnostics tested the following 

hypotheses:  

i) The model should be homoscedastic i.e. it should be free from ARCH effects – LM tests; 

ii) it should be free from autocorrelation – Ljung Box – Q statistics, and   

iii) it should follow a Normal distribution - Jarque-Bera statistic.  
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 GARCH models enforce the symmetric response of volatility to positive and negative 

shocks. This is due to the fact that the conditional variance in the GARCH equation is  

dependent upon the magnitude of the lagged square residuals but not on their signs. 

However, it has been argued that a negative shock is likely to cause a more volatile return 

series than when compared to an equivalent shock of good news. In the case of asset returns, 

such asymmetries are attributed to leverage effects. The presence of such effects is also 

examined in the paper. In order to study the impact of good news or bad news on the 

volatility of the metal series we use two asymmetric variants of the GARCH models, i.e. the 

TARCH and the EGARCH models.  

Threshold GARCH (TGARCH) model: TGARCH coefficients evaluate the asymmetries 

between the effects of good and bad news. The variance equation of the T-GARCH model is 

specified as:  

  jt
q

1j

2
jt

q

1j

2
jt

p

1i
itt Duuhh:)q,p(TARCH

jji −
=

−
=

−
=

− ∑ φ+∑ γ+∑δ+α=
.
  (4) 

In this model, we introduce a dummy variable Dt-j, adopting the values 0 and 1. If ut-j < 0,  

Dt-j takes the value 1, otherwise Dt-j  is equal to 0. So, good news and bad news have a 

different volatility impact on the series. The degree of good news impact is measured by γ, 

while the degree of bad news impact is measured by γ + φ. If φ > 0, it is concluded that there 

is asymmetry, while if φ = 0, the impact of the news is symmetric.  

Exponential GARCH (EGARCH) model:  Asymmetry of different types of shocks is of no 

use until we are in the position to determine the dominating shocks and their impact on the 

series. It is therefore essential to find which one of the effects dominates in the market. The 

Exponential GARCH model ensures that the conditional variance is non-negative. It 

captures the magnitude and sign effects of shocks and thus captures the effect of asymmetric 

returns on the conditional volatility. The variance equation of the EGARCH model is: 
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 In the above equation, if the signs of γj and ϕj are both positive, it means that the impact 

of bad and good news is the same, i.e., it is symmetric. If the sign of γj is positive and that of 

ϕj is negative, this means that the impact of bad news is greater in increasing the volatility as 

compared to the good news of the commodity series, i.e., it is asymmetric. 

 In the final part of the manuscript we look at the persistence of the series by using a 

different approach based on the concept of fractional integration. The idea is that the series 

(either the level or the volatility, measured in terms of the squared returns) may be highly 

persistent, requiring a number of differences to get a I(0) stationarity process, and this 

number of differences may not necessarily be an integer value but a fractional one. We can 

consider the following model, 

        ,...,2,1t,xzy tt
T

t =+β=     (6) 

where yt is the observed series, zt is a (kx1) vector of deterministic terms that may be an 

intercept (zt = 1) or an intercept with a linear trend (i.e., zt = (1,t)T), and xt are the regression 

errors, which follow an I(d) model of the form: 

           ...,2,1t,ux)L1( tt
d ==−    (7) 

where L is the lag operator, d can be any real number, and ut is supposed to be I(0), 

including thus potentially ARMA structures. Note that the polynomial (1–L)d in equation (7) 

can be expressed in terms of its binomial expansion, such that, for all real d: 
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In this context, d plays a crucial role, since it will be an indicator of the degree of 

dependence of the series. Thus, the higher the value of d is, the higher the level of 

association will be between the observations. Processes with d > 0 in (7) display the 

property of “long memory”, so-named because of the strong degree of association between 

observations far distant in time.   These processes are related with the ARCH/GARCH 

models in the sense that fractional integration produces nonstationarity as long as d is equal 

to or higher than 0.5 and this is due to the fact that the variance of the partial sums increases 

in magnitude with d so as to be non-summable. Thus, both (fractional integration and 

ARCH) deal with the second moment properties of the series under examination. Moreover, 

using fractional integration in the squared (or absolute) returns appears as an alternative 

approach when modelling the volatility process. The methodology used in the paper to 

estimate the fractional differencing parameter is based on the Whittle function (an 

approximation to the likelihood function) in the frequency domain (Dahlhaus, 1989). 

 

3. Empirical results 

Table 1 reports summary statistics for the daily return series of both spot and futures for 

aluminium, copper, lead, nickel, zinc and tin. It is observed that the daily mean returns and 

the standard deviations for all spot series are found to be greater than their corresponding 

futures series. The daily spot return of lead, followed by nickel and zinc, has the highest 

standard deviation, while aluminium has the least deviation in the daily spot return. 

Aluminium has a daily mean return of 0.04% and a standard deviation of 1.46% for the spot 

series compared with 0.02% and 0.127% for its corresponding futures series respectively. 

Both tin and zinc have approximately the same mean return (0.07%), but zinc has a higher 

standard deviation (2.19%) than tin (1.76%). The futures return series distributions of 

copper, aluminium and tin are found to be positively skewed while lead, nickel and zinc 
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futures return series distributions are negatively skewed. Kurtosis is the highest (15.420) for 

lead spot return and the least (4.81) for zinc futures return. On the other hand, there is strong 

evidence from the histograms and the Jarque-Bera statistics that the returns are not normally 

distributed.  

<Insert Table 1 & Figures 1 and 2> 

 Figure 1 displays the plots of the six non-ferrous metal series. Here we see that all log 

price series of the non-ferrous metal move in a very similar way.  Furthermore, the plot of 

each return series shows that heteroscedasticity is an inherent part of all the non-ferrous 

metal series. The daily return series (displayed in Figure 2) exhibit a great deal of volatility. 

Across all the sample metals, the largest shocks to the return process took place towards the 

end of 2011 coinciding with the turmoil in European financial markets. Also, in general, the 

volatility in silver and copper appear to be more pronounced than in the zinc and lead return 

series. 

 To support the descriptive statistics and graphical tests of persistence, a formal statistical 

test is attempted. Initially a simple AR(1) process with an intercept was estimated in order to 

determine the best fit linear mean function for each of the series,  

   Yt = C + β Yt-1 + εt ,        t  =  1,  2, ... .      (8) 

 The significance of this equation was then established and the error term of each mean 

equation was converted into the particular residual (εt) metal series. Before running the 

ARCH models, we conducted several serial correlation and heteroscadasticity tests. To 

examine the presence of serial correlation, we conducted the Breusch-Godfrey Serial 

Correlation LM Test. Furthermore, we conducted ARCH-LM tests that examine the 

presence of homoscedasticity across the series. The test results confirmed that all series 

display heteroscedasticity in the variance distribution. 
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 The residual generated series is used as the input to build the ARCH and GARCH 

models. Table 1 reveals through the Jarque-Bera statistic that the residuals do not follow a 

Normal distribution. The Lagrange Multiplier tests indicate that there are no ARCH effects, 

and the assumption of serial correlation is rejected through the Ljung Box Q –statistic. 

Finally, all the metal series satisfy the assumption in their respective GARCH models for the 

Normal distribution. Based on this, we could conclude that symmetry is a characteristic 

when measuring the volatility of the metal series. However, other more general 

GARCH(p,q) specifications should also be considered.  

 <Insert Tables 2 and 3> 

 Following standard approaches, it is stated that the sum of the ARCH and GARCH 

coefficients in the variance equation determines the degree of volatility persistence in the 

selected models. Table 3 reveals that for lead spot series, volatility persistence is detected 

under a Student-t-distribution, while for all the other series a Normal (Gaussian) one is used 

for the conditional distribution of the error term. Moreover, except for lead spot and zinc 

futures, the sum of the coefficients is smaller than 1, being especially close to 1 in the cases 

of aluminium, lead, tin and zinc.  

 There might be some reasons to explain the differences in the volatility of the non-ferrous 

metal series. The speculative activities for short term gains centred on commodities such as 

lead spot and zinc futures have been the main source of investment in the commodity 

market. However, there is a need for in-depth studies to discover the reasons for the different 

degrees of volatility persistence observed in the data. 

<Insert Table 4 here> 

The results of the TGARCH model are presented in Table 4. They clearly reveal 

asymmetry between good news and bad news for all the futures series except lead and 

nickel. That means that except for the lead and nickel all other futures metal series are 
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experiencing a far greater level of volatility due to the negative news shock when compared 

with a positive news shock of the same magnitude. On the contrary, all the spot price series 

except aluminium, nickel and zinc are asymmetric. Nevertheless, the results indicate no 

significant asymmetric behaviour in the nickel spot and the futures series at conventional 

statistical significance levels. If one chooses, for example, to express the asymmetric 

behaviour in the nickel spot and futures series, the result ascertains that the probability of 

committing Type I errors are about 95 percent and 32 percent respectively. Similarly for the 

aluminium spot series, lead futures and zinc spot series the probability that the series possess 

asymmetric behaviour is about 70 percent, 13 percent and 9 percent of Type I errors 

respectively. For the rest of the series the probability of Type I error is below 5 percent. 

  Furthermore, an attempt has been made to examine the extent of the impact of good news 

and bad news on the selected series. From the estimated T-GARCH model it is clear that 

good news has an impact of 0.0112 (the value of the coefficients of the ARCH component) 

and bad news has an impact of -0.0021 (the differential value of the coefficient of the ARCH 

component and the threshold component) on aluminium futures series but such an impact is 

statistically insignificant for the aluminium spot series. However, different impacts of bad 

news (-0.0852 and -0.0755) and good news (0.0013 and 0.0061) are observed for the copper 

series irrespective of the spot and futures. Finally, among all the metals, the tin spot is 

experiencing the greatest level of volatility asymmetry. 

<Insert Table 5 about here> 

 The EGARCH estimates presented in Table 5 reveal that all the series except nickel and 

zinc futures are exposed to leverage effects. That means, negative news has a far greater 

impact on the volatility of most of the metal series compared to the positive news of the 

same magnitude. Thus, negative news has a dominating effect over positive news in the non-

ferrous metal price series. However, as the EGARCH model assumes the second variance 
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term is non-negative (absolute) this enables the sign and the magnitude to have separate 

effects on the volatility, thus showing the leverage effects more prominently when compared 

to the TGARCH model.  

<Insert Table 6 about here>  

 Once the TARCH and EGARCH models have been run on all the non-ferrous metals 

series, the best model is selected on the basis of the AIC and SIC. (See Table 6). For all 

series, except tin spot, only one model is found to be significant at conventional statistical 

levels. 

 Across Tables 7 – 10 we employ a model of the form given by the equations (6) and (7) 

with zt = (1,t)T, t ≥ 1, (0, 0)T otherwise, i.e., 

,...,2,1t,ux)L1(,xty tt
d

t10t ==−+β+β=   (9) 

assuming first that the disturbance term ut is a white noise process, and then considering the 

possibility of a weakly autocorrelated process. For the latter we use a non-parametric 

approach due to Bloomfield (1973) that approximates ARMA structures with a reduced 

number of parameters. 

 Tables 7 and 8 display the estimated values of d respectively for the two cases of 

white noise and autocorrelated disturbances on the log-prices series. We consider the three 

standard cases examined in the literature, i.e., the case of no regressors (i.e., β0 = β1 = 0 a 

priori in equation (9)), an intercept (β0 unknown, and β1 = 0 a priori), and an intercept with 

a linear time trend (β0 and β1 unknown). Together with the estimate of the fractional 

differencing parameter, we also present their corresponding 95% confidence bands. 

<Insert Tables 7 and 8 about here>  

 We see in these two tables that most of the estimated values of d are within the unit root 

interval, suggesting that the I(1) hypothesis cannot be rejected in the spot and futures series. 

Evidence of mean reversion (d < 1) is only obtained in some cases with white noise 
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disturbances when including deterministic terms; however, in the most realistic case of 

autocorrelated errors, the unit root null hypothesis cannot be rejected in any single case. This 

is consistent with the results obtained in many other markets across the world (Lo, 1991; 

Hiemstra and Jones, 1997; etc.) 

<Insert Tables 9 and 10 about here>  

 Tables 9 and 10 are similar to Tables 7 and 8 but focused on the squared returns, which 

are used as proxies for the volatility. We observe that practically all the estimated values of 

d are above 0 implying long memory and corroborating thus the high degree of dependence 

in the volatility processes obtained in our previous results. Again, this is consistent with the 

results reported in other markets across the world (Ding, Granger and Engle, 1993; 

Bollerslev and Wright, 2000; etc.). 

 

4. Conclusion 

The main objective of this research was to apply several time series volatility models on 

various Indian non-ferrous metals. Data for six different non-ferrous metals were collected 

from the MCX website.  

We can summarize the main results as follows:  

(i) the symmetric volatility analysis using a GARCH model shows that all the non-ferrous 

metal series exhibit a high degree of volatility persistence. This result was also corroborated 

by means of long memory and fractionally integrated techniques, obtaining estimates of the 

differencing parameter that were significantly above 0 in all the squared return series. The 

GARCH (1, 1) model was selected for aluminium spot and futures, copper futures, copper 

spot, lead futures, nickel futures and tin spot series, while a GARCH (1, 2) was the best 

fitted model for nickel spot, tin futures and zinc spot.  
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(ii) testing the asymmetric volatility by using TARCH and EGARCH models, out of the 

twelve non-ferrous metals, TGARCH captures asymmetric effects in only seven series and 

EGARCH captures a leverage effect in ten.  

 The results of this study can be used to predict the volatility of prices in non-ferrous 

metals by the Indian manufacturing sector. This research can be further extended to 

understand the short term volatility using high frequency data, which can be of interest to 

traders investing in the commodities market. 
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Tables and Figures 
 
Table 1: Descriptive statistics of daily spot and futures return series for non-ferrous 

metals 
Aluminium Copper Lead Nickle Tin Zinc 

Statistic Spot Future Spot Future Spot Future Spot Future Spot Future Spot Future 

Mean 0.0004 0.0002 0.0010 0.0009 0.0008 0.0006 0.0006 0.0004 0.0007 0.0006 0.0007 0.0005 

Std. Dev. 0.0146 0.0127 0.0184 0.0152 0.0250 0.0195 0.0229 0.0189 0.0176 0.0169 0.0219 0.0169 

Skewness -0.106 0.0055 0.1858 0.1139 -0.6658 -0.304 -0.3533 -0.290 0.2576 0.5571 -0.7333 -0.123 

Kurtosis 5.7038 5.6787 5.5392 5.0974 15.420 6.2876 9.4717 5.7390 7.3929 12.100 15.403 4.8134 

Jarque-Bera 
322.43 

(0.000) 

314.23 

(0.000) 

288.67 

(0.000) 

194.90 

(0.000) 

6839.3 

(0.000) 

489.53 

(0.000) 

1857.7 

(0.000) 

343.35 

(0.000) 

857.51 

(0.000) 

3681.3 

(0.000) 

6837.7 

(0.000) 

146.66 

(0.000) 

Sum Sq. Dev. 0.2243 0.1703 0.3567 0.2433 0.6566 0.4009 0.5497 0.3752 0.3253 0.3003 0.5039 0.2991 

Note: Figures in parentheses indicate p-values corresponding to Jarque-Bera statistics.  

 

Table 2: Symmetric GARCH model selection  
Series Model Name AIC SBC HQIC 

 Aluminium Futures GARCH 1,1* -5.97599 -5.95276 -5.96719 

 
Aluminium Spot 

GARCH 1,1* -5.71093 -5.68770 -5.70213 

GARCH 1,2 -5.75395 -5.72607 -5.74339 

Copper Futures GARCH 1,1* -5.67286 -5.64963 -5.66406 

Copper Spot GARCH 1,1* -5.31494 -5.29171 -5.30614 

Lead Futures GARCH 1,1* -5.13692 -5.11368 -5.12812 

Lead Spot  GARCH 1,1* -5.35038 -5.52715 -5.44158 

Nickel Futures GARCH 1,1* -5.23647 -5.21324 -5.22767 

 
Nickel Spot 

GARCH 1,1 -4.94620 -4.92296 -4.93739 

GARCH 1,2* -4.95484 -4.92697 -4.94428 

 
Tin Futures 

GARCH 1,1 -5.45038 -5.42715 -5.44158 

GARCH 1,2* -5.53571 -5.50783 -5.52515 

 
Tin Spot 

GARCH 1,1* -5.35058 -5.32735 -5.34178 

GARCH 1,2 -5.35076 -5.32288 -5.34020 

 
Zinc Futures 

GARCH 1,1* -5.42403 -5.40080 -5.41523 

GARCH 1,2 -5.44328 -5.41540 -5.43272 

 
Zinc Spot 

GARCH 1,1 -5.07315 -5.04992 -5.06435 

GARCH 1,2* -5.08700 -5.05912 -5.07644 
      Note: * indicates the optimal model for the corresponding series based on selection criterion 
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Table 3: Optimized GARCH estimates for volatility persistence 

Metal Series Model Name RESID(-1)^2 RESID(-2)^2 GARCH(-1) 
Volatility 

persistence 
Σ(γj+ δi) 

Aluminium 
Futures GARCH 1,1 -0.008 …. 1.004 0.996 

Spot GARCH 1,1 0.097 -0.105 1.006 0.998 

Copper 
Futures GARCH 1,1 0.052 …. 0.925 0.977 

Spot GARCH 1,1 0.046 … 0.934 0.980 

Lead 
Futures GARCH 1,1 0.052 …. 0.94 0.992 

Spot (t-Dist) GARCH 1,1 0.718   0.384 1.027 

Nickel 
Futures GARCH 1,1 0.044 … 0.933 0.977 

Spot GARCH 1,2 0.174 -0.115 0.921 0.981 

Tin 
Futures GARCH 1,2 0.278 -0.266 0.986 0.998 

Spot GARCH 1,1 0.108 … 0.778 0.886 

Zinc 
Futures GARCH 1,2 0.09 -0.092 1.003 1.001 

Spot GARCH 1,2 0.219 -0.149 0.926 0.996 

 
 

Table 4: Optimized TGARCH estimates for volatility asymmetry examination 

Model Name RESID(-1)^2*(RESID(-1)<0) 
Good 
News 
impact 

Bad 
News 
Impact 

Decision 

Aluminium Futures 
GARCH (1,1)* 

0.0133        (0.000) 0.0112 -0.0021 Asymmetry 

Aluminium Spot 
GARCH (1,1) 

0.0021      (0.6997) 0.2218 0.2198 
No significant 
Asymmetry 

Copper Futures 
GARCH (1,1) * 

0.0865      (0.000) 0.0013 -0.0852 Asymmetry 

Copper Spot 
GARCH (1,1) * 

0.0816     (0.000) 0.0061 -0.0755 Asymmetry 

Lead Futures 
GARCH (1,1) 

0.0166     (0.1272) 0.0446 0.028 
No significant 
Asymmetry 

Lead Spot 
GARCH (1,1) * 

0.0009   (0.0014) 0.0031 0.00214 Asymmetry 

Nickel Futures 
GARCH (1,1) 

-0.0009    (0.9531) 0.0445 0.0436 
No significant 
Asymmetry 

Nickel Spot 
GARCH (1,2) 

-0.0171   (0.3186) 0.2902 0.2732 
No significant 
Asymmetry 

Tin Futures 
GARCH (1,2) * 

0.0184     (0.000) 0.7577 0.7393 Asymmetry 

Tin Spot 
GARCH (1,1) * 

0.1173    (0.000) 0.0304 -0.0869 Asymmetry 

Zinc Futures 
GARCH (1,1) * 

0.0122   (0.001) 0.1147 0.1027 Asymmetry 

Zinc Spot 
GARCH (1,2) 

-0.0151   (0.089) 0.376 0.3609 
No significant 
Asymmetry 

Note: Figures in parentheses indicate p-values and * indicates significant at 5% or less probability of Type I error. 
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Table 5: Optimized EGARCH estimates for volatility asymmetry examination 

EGARCH (1,2) =Ln(ht) =- α0 +γ1(εt−1/ √ht−1)+ γ2(εt−2/ √ht−1) +φ1(εt−1/ √ht−1)+ δln(ht-1) 
Metal  
series 
Selected 
Model of

 a
 u

ni
t 

de
cl

in
e 

in
 ε

t−
ι 

in
cr

ea
se

 
in

 ε
t−

ι 

D
om

in
at

in
g 

 
Estimates of the Optimized EGARCH model 

Aluminium 
Futures  

GARCH (1,1) 
 

-0.003 -0.025 -ve 

Ln(ht) =- 0.018 - 0.011(εt−1/ √ht−1)− 0.014(εt−1/ √ht−1) + 0.997 ln(ht-1) 

               (0.000)   (0.000)                          (0.001)                       (0.000)    

Aluminium 
Spot 

GARCH (1,1) 
-0.503 -0.003 -ve 

Ln(ht) =0.006 -0.243(εt−1/ √ht−1)− 0.253(εt−1/ √ht−1) + 1.000 ln(ht-1) 

             (0.325)   (0.000)                        (0.000)                       (0.000)    

Copper Futures 

GARCH (1,1) 

 

-0.176 0.006 -ve 
Ln(ht) =- 0.262 + 0.091(εt−1/ √ht−1)− 0.085(εt−1/ √ht−1) + 0.978 ln(ht-1) 

              (0.000)   (0.000)                          (0.000)                       (0.000)    

Copper Spot 

GARCH (1,1) 

 

-0.155 -0.031 -ve 
Ln(ht) =- 0.216 + 0.062(εt−1/ √ht−1)− 0.093(εt−1/ √ht−1) + 0.979 ln(ht-1) 

              (0.000)   (0.000)                          (0.000)                     (0.000) 

Lead Futures 

GARCH (1,1) 

 

-0.137 0.093 -ve 
Ln(ht) =- 0.170 + 0.115(εt−1/ √ht−1)− 0.022(εt−1/ √ht−1) + 0.989 ln(ht-1) 

               (0.000)   (0.000)                          (0.015)                     (0.000)    

Lead Spot  

GARCH (1,1) 

 

-0.099 -0.031 -ve 
Ln(ht) =- 0.115 + 0.034(εt−1/ √ht−1)− 0.065(εt−1/ √ht−1) + 0.998 ln(ht-1) 

              (0.000)   (0.000)                        (0.000)                          (0.000)    

Nickel Futures 

GARCH (1,1) 

 

-0.104 0.096 
-ve 

(NS) 

Ln(ht) =- 0.241 + 0.100(εt−1/ √ht−1)− 0.004(εt−1/ √ht−1) + 0.979 ln(ht-1) 

               (0.000)   (0.000)                       (0.746)                         (0.000)    

Nickel Spot 

GARCH (1,2) 

 

-0.505 0.191 -ve 

Ln(ht) =- 0.276 + 0.317(εt−1/ √ht−1)− 0.157(εt−1/ √ht−1) + 0.031(εt−2/ √ht−1) + 0.980ln(ht-

                 (0.000)   (0.000)                    (0.000)                            (0.041)                         (0.000)   

Tin Futures 

GARCH (1,2) 

 

-0.711 -0.025 -ve 

Ln(ht) =- 0.007 + 0.364(εt−1/ √ht−1)− 0.368(εt−1/ √ht−1) − 0.021(εt−2/ √ht−1) +0.999 ln(ht-

               (0.000)   (0.000)                          (0.000)                      (0.000)                           (0.000)   

 Tin Spot 

GARCH (1,1) 

 

-0.248 0.078 -ve 
Ln(ht) =- 1.114 + 0.163(εt−1/ √ht−1) − 0.085(εt−1/ √ht−1)  + 0.879 ln(ht-1) 

              (0.000)   (0.000)                     (0.000)                      (0.000)                      

Zinc Futures 

GARCH (1,1) 

 

-0.189 0.103 
-ve 

NS 

Ln(ht) =- 0.216 + 0.177(εt−1/ √ht−1) − 0.031(εt−1/ √ht−1)  + 0.986 ln(ht-1) 

              (0.000)   (0.000)                            (0.018)                      (0.000)                      

Zinc Spot 

GARCH (1,2) 

 

-0.534 0.23 -ve 

Ln(ht) =- 0.228 + 0.345(εt−1/ √ht−1)−0.152(εt−1/ √ht−1) −0.0037(εt−2/ √ht−1)+ 0.989 ln(ht-

             (0.000)   (0.000)              (0.000)                                       (0.003)              

(0.000) Note: Figures in parentheses indicate the level of significance for the corresponding coefficients 
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        Table 6: Asymmetric model comparison 

Series Model Name AIC SIC HQIC 

Aluminium Futures TARCH 1,1 -5.96936 -5.94148 -5.9588 

Aluminium Spot TARCH 1,2 -5.73755 -5.70502 -5.72523 

Copper Futures EGARCH 1,1 -5.69365 -5.66577 -5.68309 

Copper Spot EGARCH 1,1 -5.34177 -5.31389 -5.33121 

Lead Futures EGARCH 1,1 -5.14543 -5.11755 -5.13487 

Lead spot EGARCH 1,1 -5.35038 -5.52715 -5.44158 

Nickel Futures EGARCH 1,1 -5.23376 -5.20588 -5.2232 

Nickel Spot EGARCH 1,2 -4.94175 -4.90922 -4.92943 

Tin Futures TARCH 1,2 -5.58248 -5.54996 -5.57016 

 Tin Spot 
TARCH 1,1 -5.3601 -5.33222 -5.34954 

EGARCH 1,1 -5.35105 -5.32317 -5.34049 

Zinc Futures TARCH 1,2 -5.43541 -5.40289 -5.42309 

Zinc  Spot EGARCH 1,2 -5.06931 -5.03679 -5.05699 
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Table 7: Estimates of d and 95% confidence intervals with white noise disturbances 
 Spot series Future series 

 No regressors An intercept A linear trend No regressors An intercept A linear trend 

Aluminium 0.99 (0.86, 1.04) 0.90 (0.87, 0.93) 0.90 (0.87, 0.93) 0.99 (0.96, 1.04) 0.99 (0.95, 1.03) 0.99 (0.95, 1.03) 

Cupper 1.00 (0.96, 1.05) 0.88 (0.85, 0.93) 0.89 (0.86, 0.93) 1.00 (0.96, 1.05) 0.98 (0.94, 1.02) 0.98 (0.94, 1.02) 

Lead 1.01 (0.97, 1.05) 0.90 (0.87, 0.93) 0.90 (0.87, 0.93) 1.01 (0.97, 1.05) 1.02 (0.97, 1.07) 1.02 (0.97, 1.07) 

Nickle 1.01 (0.97, 1.05) 0.92 (0.88, 0.96) 0.93 (0.88, 0.96) 1.00 (0.96, 1.05) 1.01 (0.97, 1.06) 1.01 (0.97, 1.06) 

Tin 1.00 (0.96, 1.06) 0.98 (0.94, 1.03) 0.98 (0.94, 1.03) 1.00 (0.96, 1.04) 0.95 (0.92, 0.99) 0.95 (0.92, 0.99) 

Zinc 1.01 (0.97, 1.05) 0.87 (0.83, 0.91) 0.87 (0.84, 0.91) 1.00 (0.96, 1.05) 1.00 (0.96, 1.05) 1.00 (0.96, 1.05) 

In bold the 95% confidence intervals of the estimated values of d. 

 

Table 8: Estimates of d and 95% confidence intervals with autocorrelated disturbances 
 Spot series Future series 

 No regressors An intercept A linear trend No regressors An intercept A linear trend 

Aluminium 0.98 (1.02, 1.06) 0.99 (0.93, 1.09) 0.99 (0.93, 1.09) 0.98 (0.92, 1.07) 0.99 (0.92, 1.07) 0.99 (0.92, 1.07) 

Cupper 1.01 (0.94, 1.06) 0.96 (0.88, 1.04) 0.96 (0.90, 1.04) 0.99 (0.93, 1.08) 0.99 (0.92, 1.09) 0.99 (0.93, 1.08) 

Lead 1.01 (0.93, 1.06) 0.93 (0.85, 1.02) 0.93 (0.85, 1.02) 0.99 (0.93, 1.07) 0.99 (0.91, 1.07) 0.99 (0.91, 1.07) 

Nickle 1.01 (0.93, 1.06) 0.93 (0.87, 1.01) 0.93 (0.87, 1.01) 0.98 (0.92, 1.06) 1.00 (0.92, 1.08) 0.99 (0.92, 1.08) 

Tin 0.99 (0.94, 1.08) 0.99 (0.93, 1.07) 0.99 (0.93, 1.07) 1.00 (0.93, 1.08) 0.98 (0.92, 1.04) 0.98 (0.92, 1.04) 

Zinc 1.00 (0.93, 1.07) 0.96 (0.89, 1.03) 0.96 (0.89, 1.03) 0.99 (0.93, 1.07) 0.96 (0.89, 1.04) 0.96 (0.90, 1.06) 

In bold the 95% confidence intervals of the estimated values of d. 

 
Table 9: Estimates of d and 95% confidence intervals with white noise disturbances 

 Spot series (squared returns) Futures series (squared returns) 

 No regressors An intercept A linear trend No regressors An intercept A linear trend 

Aluminium 0.19 (0.15, 0.25) 0.18 (0.13, 0.23) 0.17 (0.11, 0.21) 0.08 (0.05, 0.11) 0.06 (0.04, 0.10) 0.00 (-0.04, 0.05) 

Cupper 0.16 (0.12, 0.19) 0.14 (0.11, 0.17) 0.12 (0.09, 0.15) 0.16 (0.12, 0.19) 0.14 (0.11, 0.17) 0.12 (0.09, 0.16) 

Lead 0.21 (0.16, 0.19) 0.21 (0.16, 0.27) 0.21 (0.16, 0.27) 0.08 (0.05, 0.12) 0.07 (0.04, 0.11) 0.04 (-0.01, 0.08) 

Nickle 0.18 (0.14, 0.21) 0.17 (0.13, 0.21) 0.17 (0.13, 0.21) 0.17 (0.14, 0.21) 0.15 (0.12, 0.19) 0.14 (0.10, 0.18) 

Tin 0.10 (0.06, 0.14) 0.09 (0.06, 0.13) 0.09 (0.06, 0.13) 0.09 (0.06, 0.13) 0.08 (0.05, 0.12) 0.05 (0.00, 0.10) 

Zinc 0.20 (0.15, 0.25) 0.20 (0.15, 0.25) 0.20 (0.15, 0.25) 0.10 (0.07, 0.14) 0.09 (0.06, 0.12) 0.03 (-0.02, 0.07) 

In bold the 95% confidence intervals of the estimated values of d. 

 

Table 10: Estimates of d and 95% confidence intervals with autocorrelated disturbances 
 Spot series (squared returns) Futures series (squared returns) 

 No regressors An intercept A linear trend No regressors An intercept A linear trend 

Aluminium 0.10 (0.04, 0.15) 0.07 (0.03, 0.13) 0.02 (0.00, 0.09) 0.14 (0.10, 0.20) 0.11 (0.07, 0.16) 0.03 (-0.04, 0.10) 

Cupper 0.22 (0.17, 0.27) 0.18 (0.14, 0.23) 0.17 (0.12, 0.22) 0.22 (0.18, 0.28) 0.19 (0.14, 0.24) 0.17 (0.12, 0.23) 

Lead 0.04 (0.00, 0.10) 0.04 (0.00, 0.10) 0.04 (0.00, 0.10) 0.16 (0.11, 0.23) 0.14 (0.09, 0.19) 0.09 (0.04, 0.17) 

Nickle 0.16 (0.10, 0.23) 0.14 (0.10, 0.19) 0.14 (0.10, 0.20) 0.21 (0.16, 0.27) 0.17 (0.11, 0.22) 0.15 (0.10, 0.22) 

Tin 0.21 (0.15, 0.28) 0.19 (0.13, 0.26) 0.21 (0.13, 0.29) 0.12 (0.06, 0.17) 0.10 (0.05, 0.16) 0.02 (-0.07, 0.11) 

Zinc 0.06 (0.00, 0.11) 0.06 (0.00, 0.11) 0.06 (0.00, 0.11) 0.21 (0.16, 0.28) 0.17 (0.13, 0.23) 0.08 (0.02, 0.17) 

In bold the 95% confidence intervals of the estimated values of d. 
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         Figure 1: Graph of all Metal series (Log Values) of the data used for analysis 
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Figure 2: plot of daily spot and futures return distribution 
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