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Electrification rates have been increasing within low and middle-income countries. 

However, the prevalence of outages is still a relevant issue for rural households when con- 

sidering whether to connect to the grid or not. We test this by exploiting a shock in quality 

that unequally affected different municipalities in Guatemala during 2012-2014. Our main 

estimates, which are robust to the use of an instrumental variable strategy, suggest that 

households affected by severe outages are about 18-27p.p. less likely to get a connection 

to the grid. We further check this result by combining household-level data from the 2018 

Census with a complete register of electricity quality service. Although 2018 was a good 

year in terms of quality, 1p.p. increase in the number of outage hours affected the probabil- 

ity of connection by 2.5p.p. Efforts to expand the electricity grid to rural areas should thus 

be analyzed in parallel with actual power grid quality levels. 

Keywords: power reliability; energy access; rural households; Instrumental Variables; 

Latin America 

JEL classification codes: Q49;D10;O10 

*Address: Dept. Economics, Edificio Amigos, Campus Universitario s/n, 31009, Pamplona, Spain. E-mail: 

faccursi@unav.es. 

mailto:faccursi@unav.es


2  

 

 

 

1 Introduction 

 
Even though the worldwide access to electricity has been rising from 82% in 2008 to 89% 

in 2018, almost 800 million people still do not have access to it (World Bank, 2021). Lack 

of electricity access is a particular pronounced problem in rural settings whose access rate 

is 15 p.p. less than urban.1 Although many rural households have benefited from off-grid 

energy devices like solar panels, more research is needed to study the barriers that impede 

them from fully exploiting all the advantages electricity grid provides.2 

As the Sustainable Development Goal #7 (SDG-7) stresses, access to electricity supply 

goes beyond the classic dichotomous variable of grid connection, and entails affordability, 

reliability and sustainability. These characteristics are not independent from each other, and 

access (i.e. grid expansion) does not necessarily mean truly and reliable connections. In 

particular, Lee et al. (2014) distinguishes between households that are "off grid" and those 

"under grid". The former are households too far away from the grid —and therefore too 

expensive— to be connected, and the latter are close enough to get connected at a reasonable  

low cost. In their study, they emphasize the affordability issue as a barrier to electrification: 

50% of their unconnected households were "under grid". 

In this paper we empirically study the role of the lack of reliability as a barrier for rural 

households to get a connection to the grid or also discourage households already connected 

to continue with the service. Poor quality service could also provoke conflicts in the form 

of theft and illegal connections or unpaid bills, triggering a "vicious circle" for an utility 

company: decreasing firm revenues and, therefore, increasing outages Dzansi et al. (2018). 

This issue concerns from a public policy perspective since the investment done to spread the 

low voltage grid needs social returns. Our results show that these efforts could end wasted 

if quality decreases because of, for example, insufficient complementary investments (e.g. 

transmission lines). 

1As an example of regional inequality, Smith and Wills (2018) emphasize that oil discoveries have benefited 

the urban areas leaving rural areas behind in terms of electricity access. 
2See for example Bayer et al. (2020) for a literature review. Grimm et al. (2020) suggest in their field 

experiment in rural Rwanda that willingness to pay for off-grid solar sometimes do not cover the costs of off-

grid electrification. 
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To study this policy-relevant question, we use data from Guatemala. This country of- 

fers an appropriate context for several reasons. Considered an upper middle-income country 

by the World Bank, ended a civil war in 1996 and started since then a reform process, en- 

hancing the rural electricity access rate from 48% to 74% in a decade (World Bank, 2021). 

However, in 2016, total energy consumption from residential sector came 90% from fire- 

wood and only 5% from electricity (Ministerio de Energía y Minas, 2019). Firewood, which 

is still the main primary energy source in the country specially for cooking and heating in 

rural areas, is typically associated with indoor pollution, and, hence, with well-documented 

negative health consequences (Parikh, 2011; Smith-Sivertsen et al., 2009). 

Notwithstanding the growth in rural electricity access, the urbanization process remains 

steadily and differences between urban and rural areas persist. According to the Instituto 

Nacional de Estadística (INE), in 2017 the average Metropolitan urban labor income more 

than doubled the rural one; meanwhile the poverty index was 32% in the Metropolitan Area 

in 2014, and in the North Region of the country —mostly rural—, reached 77%. This gap 

also exists in electricity supply. In the last decade, on average, rural areas suffered 35% of 

more service interruption in duration, and 14% in frequency. Importantly, after 2011, the 

number of outages suddenly increased in rural Guatemala. In this study, we take advantage 

of this plausible exogenous shock (mainly attributable to managerial reasons) to analyze the 

causal relationship between power reliability on rural households’ disposal to connect to 

the grid. 

To address our research question, we use data from the National Commission of Elec- 

tricity Energy of Guatemala (CNEE), which we combine with two household level datasets; 

namely, the National Survey of Living Conditions (ENCOVI, hereafter) of 2011 and 2014 

and the recent 2018 National Population Census. On the one hand, the ENCOVI dataset 

allows us to exploit spatial and time variation at more aggregated level. On the other hand, 

the Census data allows us to exploit spatial variation at a more granular level. 

Regarding ENCOVI, the particular variation of quality observed in time will help us for 

the identification strategy, given the aforementioned unexpected shift in quality after 2011 

that unequally affected different departments of Guatemala. Contrary to previous studies, 
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our empirical analysis uses official (objective) data on outages from CNEE, avoiding two 

classical empirical problems: self-selection bias and measurement error. Using this data, we 

find strong evidence that there is a positive effect of quality on rural household connections 

to the grid. This evidence is robust to a battery of robustness check, including an instrumen- 

tal variable regression, and it is further supported when using cross-sectional data from the 

Census. These empirical results have important policy implications, as they directly speak 

on the grid reliability vs grid expansion trade-off. 

To the best of our knowledge, most of the previous literature that studies the impact of 

power reliability has mainly focused on the industrial sector. Special attention has received 

the effect on productivity (Allcott et al., 2016; Grainger and Zhang, 2019), on average unit 

costs (Fisher-Vanden et al., 2015), firm sales (Cole et al., 2018), or strategic behavior such 

as investment on back up generation (Oseni and Pollitt, 2015). 

At the household level, most of the previous papers have concentrated on the effect 

of electrification on household outcomes, taking reliability for granted.3 According to the 

literature review by Bonan et al. (2017), there are few studies that focus on barriers to elec- 

tricity connections —the majority of which focus on liquidity constraints—, while the role 

of reliability as a barrier is not analyzed. However, since 2017 there has been an increasing 

interest on reliability itself. For example, Dang and La (2019) stresses the positive effect 

of power quality on rural income in Vietnam by the extensive margin (new connections be- 

cause of better quality) and the intensive margin (more electricity usage), Bajo-Buenestado 

(2021) states that blackouts discourage electricity connections in Kenya, and Sedai et al. 

(2021) examines the effect of reliability on reducing gender differences in labor market in 

India. 

It is important to remark that the way in which previous literature deals with the issue 

of measuring "quality" is varied. The problem of its definition depends essentially on the 

information and data structure available. For example, Chakravorty et al. (2014) uses a 

dummy variable to define either good or bad quality with a threshold value, based on self-

reported hours of effective supply and frequency of outages. Alternatively, other authors 

3See for example the effect of electrification on time distribution in Guatemala (Grogan, 2018), or on edu- 

cation (Arraiz and Calero, 2015) 
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use a continuous measure. For instance, Dang and La (2019) use data from a three-round 

household dataset in Vietnam and counts for the number of days without power outages. 

Using data from an opinion survey, Millien (2017) builds a weighted severity index of re- 

liability uncertainty based on perception data in Kenya. Our paper overcomes the usual 

problems associated to self-reported data on quality since, as discussed above, we use de- 

tailed (objective) data on outages from official sources. 

Finally, there is another related strand of the literature interested in measuring willing- 

ness to pay for ensuring a reliable power supply. For example, Hashemi (2021) points out 

the heterogeneity valuation of reliable supply across and within customer categories in India  

specially for industrial consumers. Also, Kennedy et al. (2019) construct village reliability 

supply variables from an average self-reported information, using daily hours of supply, 

availability of electricity at night, frequencies of outages and damages of electric equip- 

ment due to voltage fluctuations. They state the importance of high-quality service for rural 

households, as they are willing to pay more for better service resulting thus in additional 

connections if quality is improved. 

This paper contributes to the nascent literature on the impact of reliability on the up- 

take of electricity connections. Our findings are aligned with Millien (2017) and Kennedy 

et al. (2019). In terms of policy implications, keeping a good quality service would be as 

important as grid extension as Chakravorty et al. (2014) document for the Indian case, with 

their positive impact on household incomes. In addition, Chaurey and Le (2022) argues that 

infrastructure maintenance (i.e. electrification and roads connectivity) play an important 

role in enhancing rural economic activity. 

The rest of the paper is organized as follows. Section 2 provides a brief background on 

the Guatemala electricity sector. Section 2.3 describes the data —further explained in the 

Appendix. Then, Section 2.4 explains the empirical strategy and discusses how we tackle 

some potential issues as threats to identification. Section 3 explains the main results with 

additional robustness checks. Finally, Section 4 concludes. 
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2 Materials And Methods 

 
2.1 Background 

 
2.1.1 Recent History of Guatemalan Power Sector 

 
In this section we provide some figures to put Guatemala (and its power sector) in context. 

According to the World Bank, its GDP per capita (PPP) grew 3.1% annually on average in 

2000s and 3% in 2010s. Rural population access to electricity has also experienced a steady 

growth path, growing from 55% in 2000 to 93% in 2018. However, according to Census 

data, 77.7% of rural households are connected to the energy grid, 6% have solar panels, 

12% use candle and 3.7% other sources of lightning. Almost half of population (46%) 

live in rural areas, and one third of labor force are farmers. 

After the 1960-1996 civil war, there was an evident lack of infrastructure and services, 

particularly in the energy sector. In 1995, the electricity access was 88.9% in urban areas, 

while 39% for rural population. The outstanding growth in grid expansion begun in 1996 

with the General Electric Law (LGE), which established a new scheme for electricity market 

based on liberalization and competition. In order to increase electrification rates, the LGE 

established the obligation for the utilities to connect households which were closer than 

200 meters from any of their installation. Also, it allowed the Government to gather the 

necessary resources to expand the grid beyond that area (Iorio and Sanin, 2019). Therefore, 

80% of the most important public utility firm (EEGSA) was sold in 1998, as well as the 80% 

of the other two large utility firms (DEOCSA and DEORSA). Part of the money obtained 

from these privatizations financed the grid expansion, especially in rural areas (Benavides 

and Dussan, 2004), where the main investments were done up to 2005. According to Iorio 

and Sanin (2019), 76% of new connections made between 1999-2014, were done during the 

first five years. In addition, according to Paz Antolín (2009), this grid network expansion 

was not accompanied by the necessary investments on the transportation line, resulting in a 

lower quality service. 

The LGE also created new institutions that regulate and supervise the energy sector 

such as the National Commission of Electricity Energy (CNEE) and the Wholesale Market 
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Operator (AMM). CNEE is the Government agency in charge of ensuring the compliance 

of the LGE and its regulations, monitoring quality of the energy supplied, penalizing utility 

companies, and approving retail prices each term following the conditions approved in the 

Tariff Agreement (which is renewed every five years). 

 
2.2 Generation and distribution of electricity 

 
Guatemala generation relies mainly on renewable sources which follows a seasonal pattern. 

Hydro reaches more than 50% in rainy season (May to October), and biomass generation 

(mainly from sugarcane) is concentrated in first trimester. Figure 1 displays the evolution 

of installed capacity according to data from the AMM. 

Although the load factor has been raising from 57% in 2001 to 70% in 2018, the in- 

stalled capacity has been enough to fulfill its national consumption and even to export. In 

fact, Guatemala has been a net exporter over this period. That is, in contrast to some low-

income countries, the lack of reliability is unlikely to arise due to generation constraints, 

but it is usually linked to issues in the distribution stage. 

 

 
Figure 1: Evolution of installed capacity. 

 
The distribution of electricity is mainly done by three large utility companies which have 
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almost a zonal distribution. EEGSA (38% of total customers) provides to the densest 

urban area —Guatemala department—; DEOCSA (33%) and DEORSA (22%) provide to 

the West and East areas of the country, respectively. These last two firms supply an area 

where 92% of the Guatemalan rural population live.4 

Figure 2 shows the average number of hours with outages in a semester. There is an 

upsurge of outages in DEOCSA and DEORSA area in 2012-2014, returning to its mean 

afterwards. This increment in outage hours coincides contemporaneously with a large num- 

ber of service cut offs in Table 1. We exploit this quality variability over time and space —as 

different departments in rural Guatemala were unevenly affected— to estimate the impact 

of reliability on electrification, using the National Survey of Living Conditions (EN- COVI) 

waves 2011 and 2014. 

 

 
Figure 2: Evolution of the number of hours with power outages (SAIDI). 

 
In addition to regulating minimum quality standards, CNEE also sets the electricity 

rates. They are based on an agreement between the government agency and each individual 

firm every five years. In this agreement, among other aspects, it is decided the way to update  

prices quarterly accordingly to input costs. CNEE announces publicly the new prices with 

a resolution. Thus, the final consumer price comprises four elements: a fixed and a variable 
 

4In addition, there are sixteen small firms in some cities that provide energy only to its urban area. In 2018, 

they represented only 7% of low voltage consumers. See Appendix 
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component approved by CNEE, plus a Public Light Tariff (PLT) established by each of the 

340 municipalities in Guatemala, and finally the value added tax. 

In 2019, 94% of the Guatemalan households belonged to the residential category named 

Social Tariff, which includes households that consume less than 300kw/h per month. Addi- 

tionally, this group could also be benefited by the so called "INDE contribution", which is 

a tiered subsidy up to 100kw/h.5 In practice, the subsidy entails a maximum price only for 

the variable component of the rate. In other words, the difference between the Social Tariff 

and that price cap is paid by INDE. 6 Figure 6 shows the parallel evolution of Social Tariff 

and subsidies, entailing a price cap quite stable along time. According to official data, in 

December 2018 almost 70% of DEOCSA and DEORSA Social Tariff consumers received 

the INDE contribution. Since 70% of all DEOCSA customers live in rural zones, and 63% 

in DEORSA, we can infer that INDE contribution benefits nearly all rural households.7 

Although electricity rates are homogeneous for rural consumers due to INDE contribu- 

tion, the final bill is not. Dispersion across the country comes mainly from the way munic- 

ipality collects the PLT. In EEGSA zone is charged an ad valorem tax, while in DEOCSA 

and DEORSA area there is a lump sum. Simulating a monthly 50kw/h consumption, the 

maximum bill (16.5 US$) is almost three times more than the minimum (5.6 US$). How- 

ever, since we drop EEGSA municipalities, final bill is quite homogeneous between DE- 

OCSA and DEORSA municipalities. More importantly, the PLT did not suffer important 

modifications across time.8 

5The Instituto Nacional de Electrificación (INDE) is a public, autonomous and decentralized organization, 
which owns the main hydro plant of the country Chixoy (300Mw). Hydro plants profits let finance subsidies. 

6For example, if a household consumes 150kw/h in a month, it pays the fixed cost plus the variable cost 

—in this case the Social Tariff—, and then it receives the INDE contribution for the first 100kw consumed. For 

instance, in November 2019, the scheme was: Q0.50 from 1-60kw/h; Q0.81 from 61-88kw/h. Simulating the 

bill for a hypothetical consumer in DEOCSA zone, assuming a consumption of 150kw/h, the final cost will 

be: 

Q14.8 + 150 ∗ (1.86) − [60 ∗ (1.86 − 0.5) + 28 ∗ (1.86 − 0.81)] = Q183 

So far, it represents a 60% discount. Then, the VAT of 12% is added, and finally, the public lighting fee to final 

bill. The way to calculate the bill is available at: http://www.cnee.gob.gt/Calculadora/index.php 
7The price cap has been Q 0.50 for customers that consumes between 1-50 kw/h per month. Although, the 

subsidy scheme has occasionally been changed (specially the scales), the lowest category has almost always had 

the same price. The poorest household are represented in that range. According to Centro de Investigaciones 

Económicas Nacionales (2015), 40% of Guatemalan families were in this category, and 30% between 51- 

100kw/h. 
8CNEE gave us data on monthly PLT by municipality from 2015. Average PLT in 2015 was Q36.9 and in 

http://www.cnee.gob.gt/Calculadora/index.php
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Table 1: Utilities main characteristics (2014) 

 
 EEGSA DEOCSA DEORSA 

Total Consumers 1,108,352 975,717 598,550 

% Rural 45% 70% 63% 

Social Tariff Consumers 997,668 952,152 576,215 

Per capita consumption (kw/h per month) 104.66 68.61 79.06 

Social Tariff (Quetzal/kw/h) 1.63 2.02 1.92 

Large Consumers 769 9 49 

Compensation (Quetzals) Q767,967 Q46,211,187 Q54,525,905 

Services cut off (%) 6% 17% 22% 

KvA installed per user 2.58 0.99 1.44 

Notes: Services cut off is a proportion of total consumers. Compensation data is from 2013 as well as the proportion of rural 

consumers. Source: CNEE. 

 

2.3 Data Description 

 
Reliability is defined as "the attribute of energy supply that implies ability to draw energy 

when needed for use of energy services" (Bhatia and Angelou, 2015). One of the commonly 

metrics used for measuring quality is System Average Interruption Duration Index (SAIDI). 

In particular, the CNEE uses the following formula: 

 

SAIDIm = (ΣcmΣ j(Durationcm j))/Σcm, 

 
which essentially captures the average duration of the lack of electricity supply for a cus- 

tomer c in municipality m. The duration of the outage is indexed by j. We have semi-annual 

data on rural areas from almost all municipalities (338 out of 340) in the time span of 

2006 to 2018. To obtain quality service at municipality level, we get the mean of the two 

semesters observations over the year, and finally we get an unweighted mean for each de- 

partment.9 Figure 3 displays three departments with the best quality, and all of them belongs 

to EEGSA, which serves the capital city of Guatemala. 

In addition to SAIDI evolution over time portrayed in Figure 2, Table 2 adds some 
 

2018 Q35.2. Reading CNEE reports we found no evidence of an important change in PLT scheme between 

years 2011 and 2014. For simulation bills in different municipalities see Figure 7. 
9Due to regulation requirements (CNEE Resolution 9/1999) quality of service supply must be measured 

twice a year. The normative settles some limits per consumer, establishing the right to be compensated if that 

limit is exceeded. The edge for duration is 6 for urban area, and 8 for rural. For more information of raw data 

see Appendix. 
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details regarding reliability performance in some districts. Over 2008/2018 period, DE- 

OCSA failed to reach the legal maximum of SAIDI hours almost 5 years out of 11 in each 

municipality, and DEORSA over 5. This directly speaks on the heterogeneity of SAIDI 

performance in some districts in DEOCSA and DEORSA region. 

Table 2: SAIDI descriptive statistics 
 

 

Obs 

 

Mean 

DEOCSA 

Std Min 

 

Max 

 

Obs 

 

Mean 

DEORSA 

Std Min 

 

Max 

SAIDI 2011 (hs/semester) 172 10.3 8.4 0.2 56.0 110 10.4 6.9 2.0 54.0 

SAIDI 2014 (hs/semester) 176 41.4 29.2 5.6 164.9 113 45.3 23.7 12.8 137.7 

SAIDI 2018 (hs/semester) 173 10.3 5.8 0.4 39.4 113 13.8 6.6 3.2 36.8 

Frequency SAIDI >14hs (2008/18) 162 4.7 2.1 0 11.0 110 5.3 2.0 1.0 11 

Frequency SAIDI >14hs (2015/18) 166 1.4 1.2 0 4.0 113 1.8 1.7 0 4.0 

Note: Obs is the number of municipalities.   SAIDI is an unweighted mean by firm.   It is expressed in total 

hours by semester. Frequency is the number of times that SAIDI exceeds the quality regulation of 14hs in a 

municipality. We only consider municipalities that have no missing data over that period. Source: CNEE 

 
 

Household information come from two sources, namely, the National Survey of Living 

Conditions (ENCOVI) —waves 2011 and 2014—, and 2018 Census database (INE, 2018). 

The geographic level of aggregation is at the department level in the former, and at the mu- 

nicipality level in the latter. The Census was conducted between July and August 2018, and 

collects detailed information about the universe of households in the country (3,275,931), 

such as dwelling characteristics, level of education, labor and migrant condition. 

The output dummy variable of interest, grid connection, equals 1 if the head of the 

household answers "yes" to the closed question whether the house is connected to an elec- 

trical distribution network. In Census questionnaire is stated in another way, asking what 

type of lightning is mainly used at home. Any answer that is not "electricity" (e.g. gas, can- 

dle) is recorded as zero. Figure 3 shows that the East part of the country has lower values 

of electrification rate. 

 

2.4 Empirical Strategy 

 
2.4.1 Regression Model 

 
We explore the impact of reliability on grid connection by exploiting variation in SAIDI 

over 2011-2014 period —coinciding with ENCOVI database— and then compare those 

results with those obtained using the 2018 Census. Therefore, the empirical strategy will 



12  

 

 

 

 
 

 
 

Figure 3: Rural electrification rate and SAIDI at department level (2014) 

 
be twofold. First, we use the repeated cross section dataset (ENCOVI) at department level 

with time variation in a lineal probability model, which is as follows 

Yhdrt = α0 + α1 ∗ LnSAIDIdrt + Hhdrt + Ddrt + ηr + θt + εhdrt (1) 

where subscripts h, d, r, t mean household, department, region and time respectively.10 Yhdrt 

is a dummy variable whether the household h is connected to the grid in department d in 

region r at time t. Our quality measure is the natural logarithm of SAIDI in department d, 

calculated as described above. Hhdrt is a set of control variables at the household level, Ddrt 

are some characteristics at department level, ηr are region-specific dummies and θt denote 

year fixed effects. The interaction of both is included in some specifications, and finally 

εhdrt is the error term. 

In equation (1), our parameter of interest is α1 which measures the average effect of 1% 

increase in the lack of reliability on the probability of a rural household to be connected 

to the grid. The identification of this effect relies on the assumption that the 2012 change 

in SAIDI is orthogonal to households’ electrification decision. Thus, we hypothesize 

that a reduction in quality —an increase in SAIDI— at department level, reduces the 

10Guatemala is divided into 8 regions, 22 departments and 340 municipalities. Regions and departments 

are geographically divisions and administrative areas but with low political power. Because of geographical, 

economical or social reasons, departments are grouped into regions. Only Petén department is a region on itself. 
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expected benefits of electrification for households, resulting in a lower number of 

connections. 

Next, in order to confer robustness to our results, we present a second regression model 

estimated using cross-sectional and more granular data. More precisely, we combine the 

Census database with CNEE records at municipality level to estimate the following regres- 

sion model: 

 
Yhmd = β0 + β1 ∗ LnSAIDImd + Hhmd + Mmd + ηd + εhmd (2) 

where Mmd are some municipality-level characteristics in department d, ηd are department 

fixed effects, εhmd is the error term, and the rest of the variables are as defined above. In 

equation (2) β1 captures the average effect of 1% increase in the lack of reliability on the 

probability of a rural household to be connected to the grid, at municipality level in 2018. 

Different sets of control variables at dwelling and household level are considered. Re- 

garding the dwelling unit, the following dummy variables are created: ownership, housing 

materials (i.e. thatched roof, metal sheet wall, or having no floor), shared house with an- 

other family, having some facilities (e.g. kitchen, own toilet access). At household level we 

control for remittances reception, whether any household member has ever emigrated; and 

whether the household is overcrowded.11 Besides, we have income data from ENCOVI as 

well as some household´s assets (e.g. radio, motorbike).12 Finally, we include dummy vari- 

ables that give information of the head of household, sex, age, level of education, marital 

status, spoken language, ethnicity and type of job (e.g.: self-employer, farmer, retailer). 

Furthermore, to capture socioeconomic conditions at municipality or depart- ment 

level we add some mean characteristics in their rural area: employment, literacy and 

schooling rate.13 We also control for the proportion of  households  with  a  child  between 

11The usual standard to define overcrowding is when more than three people sleep in a room. This measure 

is the ratio between all the members of the household and the number of rooms, not including the kitchen. 

However, ECLAC warns that for some indigenous culture, many people are used to sleep in large rooms, so 

overcrowd could be overestimated. 
12We deflate total familiar income, and then we transform it by the inverse hyperbolic sine. We make this 

transformation –instead of logarithm– in order to avoid losing zero income observations.The coefficient inter- 

pretation is not income elasticity, but the sign provides information if it is a normal or an inferior good. See 

Bellemare and Wichman (2020) 
13Literacy is defined as people older than 15 who knows reading and writing. Schooling rate is defined as: 

kids from 4 to 14 years who attends the school, divided total population of kids 4-14. 
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7 and 12 years old working, has its own toilet, has water access, owns a motorbike, and has 

poor dwelling conditions as already defined. 

In addition to these socioeconomic variables, we include Cooling Degree Days (CDD) 

as a demand driver and Public Lightning Tariff.14 Due to the fact that PLT data is 

available since 2015 at municipality level, we incorporate it in Census regression model. 

Full descriptive summary statistics are available in the Appendix, Tables 11 and 12. 

Although similar in SAIDI levels and in socioeconomic variables, regions supplied by DE- 

OCSA and DEORSA are quite different in two aspects: more indigenous ethnic compo- 

sition in the West, and better access to some other facilities besides grid connection (e.g. 

water pipe access). Finally, although average total familiar income is larger in the East, more 

households are considered in "extreme poverty" reflecting more inequality in that region. 

 
2.4.2 Main Identification Assumptions 

 
Our objective reliability measure (SAIDI) is in principle an endogenous variable. However, 

Figure 2 gives evidence of a potential exogenous shock only to DEOCSA and DEORSA 

area. This variation in time and space (across municipalities), if exogenous induced, could 

let us find an unbiased estimation of α1 in equation (1). 

In terms of what reasons could be behind this sudden change, we are inclined to 

think it was due to insufficient transmission infrastructure and managerial problems. 

DEOCSA and DEORSA were sold from Union Fenosa to Actis Group in May 2011 and 

later resold in 2016 to ENERGUATE (the current owner of both firms). In addition, the 

proximity of Tariff Agreement expiration with CNEE in 2014, would have probably 

discouraged important investments. This hypothesis is in line with anecdotal evidence 

from the local press, which stated there had not been investments neither from Union 

Fenosa in its last years nor from Actis.15 Therefore, it seems reasonable to think that the 

sudden change in quality in 2012 it is not linked in principle, to demand factors. 

14Some part of the literature includes weather conditions that push demand, such as cooling or heating degree 

days (e.g.Allcott et al. (2016)). In the Guatemalan context, the demand of electricity for heating is useless in 

many parts of the country due not only for tropical weather, but also for the widespread use of firewood. 
15See Estrategia y Negocios (2016). The highest amount of compensation (US$14 million) imposed by 

CNEE for different kind of infractions was in 2013, and almost 90% corresponded to these two firms. 
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Nevertheless, there are other plausible explanations. First, an unforeseen increase in 

grid-connected consumers entailing an endogenous shift in quality. Second, an insufficient 

energy supply in long-term contracts that had forced firms to buy in the spot market at higher 

prices. Third, firms were getting into a "vicious circle" of bad quality and not payment 

behavior conducting to financial constraints, or in some cases electricity theft. 

The first potential cause seems not to have anchor in data. The total number of cus- 

tomers (rural and urban) increased between 2007-2011, at a different path along firms: 

EEGSA experienced an annually growth rate of 3.1%, meanwhile DEOCSA and DEORSA 

were both 2.1%. These growth rates are lower in comparison with the later period 2015- 

2018: DEOCSA (2.3%) and DEORSA (3.4%). 

Secondly, although the need of buying energy at a more expensive spot market would 

have affected all firms similarly, EEGSA did improve during those years, while 

DEOCSA and DEORSA did not. As tariffs could be updated and, more importantly, they did 

not imply a larger rural household spending because of the subsidy scheme, it should not 

affect firms’ financial health. Therefore, and in relation with the third cause, if families 

did not pay their bills, the main reason of nonpayment would have not probably come from 

the price side, but from the quality one. In addition to the lack of payment, which can be 

deduced from the high number of disconnections in Table 1, there is also evidence of an 

increase in illegal connections MEM (2014). Both are potential outcomes of an 

unsatisfactory service.  

We do not include in the main regression setup households in EEGSA service zone 

for many reasons. First and foremost, because the shock was in DEOCSA and DEORSA 

area. Second, in ENCOVI dataset we do not have information on household’s 

municipality, and there are two municipalities in a mainly EEGSA department that are 

supplied by DEOCSA. Therefore, it is impossible to distinguish. Finally, 92% or rural 

population live in the area supplied by DEOCSA and DEORSA. However, as robustness 

check, we include them in 

the 2018 Census. 
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2.4.3 Potential Threats to Identification 

 
So far, we provide several arguments that lead us to believe that the sudden variation in 

SAIDI in 2012-2014 is not driven by demand-related factors. Still, one might be concern 

of a potential endogeneity problem. In order to mitigate this concern, we provide 

additional evidence using IV regressions with rainfall as instrument.16 Previous studies 

(e.g. Cole et al. (2018)) rely on the assumption that more rainfall means more water 

disposal to hydro generation and, therefore, more electricity availability. 

However, we argue the opposite in the rural Guatemalan context. One reason is that the 

country can substitute different fuels to generate electricity in case there is not enough 

hydro generation (e.g.in the dry season). Also, when heavy rains come (frequently 

together with strong winds, like in tropical storms), muddy or flooded roads makes 

maintenance tasks complicated, and power outages sometimes appear even before the 

storm starts a precaution measure in rural areas. 

Regarding the exclusion restriction, it could be argued that in wet areas where there are 

less possibilities to do outdoor activities, and therefore, watching TV becomes a potential 

leisure activity. Thus, rainfall could also be affecting households’ decision to connect to 

the grid, driving more demand in those areas. However, Guatemala data shows that 35% of 

electrified rural houses do not have a TV, so this concern seems to be a second order issue. 

To build the rainfall variables for the IV strategy, we gathered weather data from 

the national weather agency of Guatemala (INSIVUMEH) and the Statistics Institute 

(INE), which provides information of 49 weather stations that belongs to the studied area. 

We assign each municipality to the closest Weather Station, and then we aggregate data into  

department level for ENCOVI regression. 

As regards equation (2), the empirical strategy is different. Census dataset is cross- 

sectional, without time varying information, and we can not exploit any shift in quality nor 

in rainfall. Besides, our former measure of rainfall is a weak instrument at municipality 

16The way literature exploits exogenous variation on quality is varied. For the sake of simplicity: lightning 

density (Andersen and Dalgaard, 2013), a river-flow modelling and its impact on hydro-power generation (Cole 

et al., 2018), temperature (Fisher-Vanden et al., 2015), lightning activity and distance to the closest generator 

(Millien, 2017) 
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level because is difficult that only 49 weather stations could represent the variability needed 

for 340 municipalities.17 

Therefore, we follow Dang and La (2019) and Sedai et al. (2021) procedure, which use 

as instrumental variable the average quality at district level obtained from the rest of the 

districts that belongs to the same department. In our context, the instrument z would be: 

1 S 
z 

md = 
S ∑ SAIDI j , being j ̸= m, m ∈/ S, m ∈ D and D=1,2,.....S,m (3) 

 

where zmd is the average SAIDI in municipality m in department d, using SAIDI informa- 

tion from all districts that belongs to the same department d, except municipality m. The 

exogeneity condition is expected to hold because quality in other municipalities does not 

directly affect the household decision to grid connect in its own district.18 

Finally, one could also be concerned of the aforementioned "off-grid" households. There 

are rural settlements so far away from grid lines, that having a grid connection is not fea- 

sible. Although the probability of having such isolated households is very low in ENCOVI 

dataset, it is not the case for Census where the entire population is surveyed. Thus, we 

estimate our main regression in Census model after dropping rural households that declare 

having solar panels (6% of rural households), because they are most likely too far from the 

power grid. Then, as an additional robustness check we re-include them in Section 3.2 and 

main results hold. 

 
3 Results 

 
3.1 Main Results 

 
The main results obtained using the ENCOVI regression —equation (1)— are presented in 

Table 3. The four columns reflect different estimated models, considering different 

subsets of controls. Robust standard errors are clustered at Primary Sample Unit level.19 
 

17For an in-depth discussion for the instrumental variable, see Appendix. 
18Although it could be argued that families could move to municipalities that have better facilities, the rich- 

ness of our database allow us to control for migration condition. 

j=1 
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We find a negative relationship between SAIDI and the probability of a rural household 

to get connected in columns (3) and (4). The magnitude varies from 14p.p. to 19p.p. in 

our preferred and most complete specification. In column (4) we have additional controls at 

household and department level, year and region fixed effects and the interaction between 

them. If quality decreases 1%, the probability of connection goes down by 18.6 percentage 

points. In the context of 2011-2014 period, this means that reducing SAIDI at department 

level by almost 30 minutes per year, will increase an expected number of 54,325 new cus- 

tomers, representing 1.3 US$ million dollars in annual revenues.20 

The rest of the control variables show the expected sign. Those correlated with wealth 

(e.g. dwelling materials, income) are positively correlated with a higher probability to have 

grid connection. In addition, the positive sign of CDD implies that, conditional on the rest of  

control variables, those departments where the climate is hotter, there is a relatively higher 

demand in power grid connections. 

Despite the fact power grid connection raises in rural areas between 2011-2014 —see 

Table 11—, these results provide evidence that this growth would have been larger if quality  

had been better. In other words, rural grid connection increased in that period as well as 

quality declined. However, other variables positive correlated with grid connection also 

improved in this period, such as education level and income (e.g. real GDP growth was on 

average 3.6% in 2011-2014). 

Having exploited spatial and time variation in the ENCOVI regression setup, we now 

complement them with those obtained using more granular data from the Census. Results 

of this second model specifications are resumed in Table 4, where robust standard errors are 

clustered at the municipality level.  

19Primary Sample Units (PSU) are random selected areas. Each one has its own weight to expand results to 

the whole population. In ENCOVI we can either cluster at PSU level or department level. Since having only 19 

clusters is too few, we estimate Wild cluster bootstrap standard errors (see Cameron et al. (2008) and 

Cameron and Miller (2015)). Results are robust to both methods. Although clustering at department-year level 

would have doubled the number of clusters, we would be assuming that quality -or rainfall in the IV case- are 

not autocorrelated, which could be a strong assumption. 
20In 2011-2014, on average SAIDI was 26.9 hours by semester or 54 hours per year. Also, on average, 

34 out of 100 did not have grid connection, so improving 18.6pp means: 0.34*0.186= 0.063, six out of 100 

unconnected households will be expected to connect, representing 54,325 new households. At the end of 2014, 

with a monthly fix fee of 15 quetzales per customer represented, it gives approximately 23.7 dollars annually 

per customer in revenues. 
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Table 3: The impact of SAIDI on Grid Connection (ENCOVI 2011-2014) 
 

Outcome: Grid connection 
 (1) (2) (3) (4) 

Ln SAIDI -0.150*** -0.071* -0.135** -0.184** 
 (0.050) (0.043) (0.062) (0.087) 

Cooling Degree Days -0.017*** -0.011*** 0.009 0.013** 
 (0.004) (0.004) (0.006) (0.006) 

Poor housing materials -0.346*** -0.272*** -0.201*** -0.201*** 
 (0.016) (0.015) (0.014) (0.014) 

Real income per capita (asinh) 0.017*** 0.013*** 0.007*** 0.007*** 

 (0.003) (0.003) (0.002) (0.003) 

Year FE Yes Yes Yes Yes 

Dwelling characteristics No Yes Yes Yes 

Household controls No No Yes Yes 

Department controls No No Yes Yes 

Region FE No No Yes Yes 

Region FE* Year FE No No No Yes 
Observations 12,940 12,914 12,825 12,825 

Adjusted R2 0.174 0.235 0.320 0.322 

Dwelling specific controls include: ownership, shared house, connected to water grid, 

own toilet access, own kitchen, overcrowd. Households’ controls comprise if 

household receives remittances and Head of Household variables: gender, recent 

migrant (5 years), age, labor, marital status, spoken language, ethnic and education. 

Robust clustered standard errors at PSU level (1,138) 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 4: The impact of SAIDI on Grid Connection (Census, 2018) 
 

Outcome: Grid connection 
 (1) (2) (3) (4) 

Ln SAIDI -0.0508** -0.0536*** -0.0228* -0.0245* 
 (-3.03) (-3.84) (-2.11) (-2.34) 

Cooling Degree Days 0.00733* 0.00285 0.00475 0.00576 
 (2.45) (1.07) (1.79) (1.71) 

Public Light Tariff -0.00153 -0.00196** -0.000902 -0.00105 
 (-1.88) (-2.71) (-1.61) (-1.91) 

Asset: Motorbike 0.0640*** 0.0467*** 0.0457*** 0.0416*** 
 (9.53) (8.85) (11.30) (10.93) 

Asset: Radio 0.135*** 0.126*** 0.113*** 0.111*** 

 (21.07) (22.28) (23.24) (23.11) 

Dwelling characteristics Yes Yes Yes Yes 

Head of household controls No Yes Yes Yes 

Municipality controls No No No Yes 

Department FE No No Yes Yes 

Adjusted R2 0.223 0.249 0.283 0.288 

Observations 1,178,160 1,171,243 1,171,243 1,171,243 

Dwelling specific controls include: ownership, shared house, connected to water grid,  

own toilet access, housing materials, own kitchen, overcrowd. Head of household con- 

trols comprise: gender, recent migrant, age, labor, marital status, spoken language, ethnic,  

education, and if there is any kid working in the house. Robust clustered standard errors 

at municipality level (266) 

* p < 0.1, ** p < 0.05, *** p < 0.01 
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First, as it was also the case in the ENCOVI regression, all variables correlated with 

income —e.g. assets— do also have a positive impact on the probability to have a grid con- 

nection. Nevertheless, two variables at municipality level show no effect: Cooling Degree 

Days and Public Light Tariff. The effect of SAIDI remains being statistically significant 

and negative. Now, 1% of reduction in SAIDI (15 minutes annually on average at munici- 

pality level), raises the probability of getting connected in 2.5 p.p., representing 20,489 new 

rural household connections. Although at first glance one could think that 15 minutes per 

year and its effect is meaningless, we should have in mind that quality level has improved 

significantly in comparison with ENCOVI period, which could lead us to think that the level 

of quality matters. Although results are robust to both regression setups and database, some 

additional estimates should be performed. 

 
3.2 Robustness Checks 

 
We now estimate equations (1) and (2) by 2SLS. Each column of Table (5) and Table (6) 

replicates the same model as in Table (3) and Table (4) respectively. We test the strength of 

the instrument using Kleinbergen-Paap F-Statistic. 

In the first three columns of Table (5) we can not reject the null hypothesis of being 

a weak instrument. Once we include the interaction term between Region and Year, we 

have evidence rainfall is an adequate instrument. Column (4) estimates that 1% reduction 

in SAIDI increases 27.6 percentage points the probability of a rural household to connect 

to the grid. This estimation is 9 p.p. larger than OLS. In terms of new connections, this 

would have represented 80,741 new rural connections and 1.9 US$ million dollars in annual 

revenues. 

Meanwhile, F-test in Table 6 shows there is no evidence to support rainfall as an instru- 

ment. The less variation across municipalities and, on top of everything, the loss of 

variation on time, make rainfall an inadequate instrument. However, using zmd from 

equation 3 as instrument in Columns 3 and 4, the 2SLS estimation gives account of a 

negative effect of SAIDI —3% on average— on households’ willingness to connect to the 

grid.  Our preferred model specification (model 4) presents an estimation 0.5 p.p.  
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larger than OLS in Table 4. 

Table 5: The impact of SAIDI on Grid Connection (2SLS estimation-ENCOVI) 
 

Outcome: Grid connection 
 (1) (2) (3) (4) 

Ln SAIDI -0.670 -0.320 -0.234** -0.275*** 
 (0.506) (0.463) (0.096) (0.049) 

Cooling Degree Days 0.001 -0.003 0.009** 0.014*** 
 (0.020) (0.016) (0.004) (0.003) 

Poor housing materials -0.328*** -0.270*** -0.201*** -0.201*** 
 (0.030) (0.025) (0.016) (0.016) 

Real income per capita (asinh) 0.015** 0.013** 0.007* 0.007* 

 (0.006) (0.005) (0.004) (0.004) 

Year FE Yes Yes Yes Yes 

Dwelling characteristics No Yes Yes Yes 

Household controls No No Yes Yes 

Department controls No No Yes Yes 

Region FE No No Yes Yes 

Region FE* Year FE No No No Yes 

Adjusted R2 0.119 0.223 0.320 0.321 

F_test 3.872 3.898 8.587 20.492 

Observations 12,940 12,914 12,825 12,825 

In parenthesis Robust Standard Errors clustered at department level. Results remain with 

Wild Bootstrapped Robust standard errors with 400 replications clustered at department 

level. F-statistic is the heteroskedasticity and cluster robust Kleibergen-Paap weak instru- 

ment test. With a 5% level of confidence and a potential bias of 10%, the instrument is 

not considered weak if F>16, see Stock and Yogo (2005). M1-M4 means models 1 to 4 

of of Table 3. Instrumental variable: rainfall from Weather Stations. 

* p<0.10, ** p<0.05, *** p<0.001 

 
 

In addition to 2SLS estimation, we perform some robustness checks regarding ENCOVI 

and Census regression setups. Firstly, from ENCOVI we should be aware of the method of 

aggregation used to calculate SAIDI at department level. So far, SAIDI has been calculated 

as a simple average without considering the population in each municipality. Therefore, 

we construct an alternative variable: SAIDIw. It is a weighted average by the number of 

households a municipality has, according to 2018 Census. With this new measure, on the 

one hand, we could have a more representative SAIDI measure at department level. On the 

other hand, we could be giving a double —and possible wrong— weight to each household 

observation, since the only geographical information provided by ENCOVI is from which 

department household belongs to, but not the municipality. The ENCOVI, as any survey, 

has its weights to extrapolate results to whole population, in this case to rural. Results are in 

Table 7, and SAIDI remains being significant. In comparison with Table 3, point estimations 

are different when we do not control for year FE. 
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Table 6: The impact of SAIDI on Grid Connection (2SLS Estimation-Census) 
 

Outcome: Grid connection 
 (1) (2) (3) (4) 

Ln SAIDI -0.010 0.043 -0.033* -0.030** 

 (0.199) (0.379) (0.017) (0.014) 

Cooling Degree Days 0.005 0.004 0.005* 0.006* 
 (0.003) (0.007) (0.003) (0.003) 

Public Light Tariff -0.001 -0.001 -0.001 -0.001* 
 (0.001) (0.001) (0.001) (0.001) 

Asset: Motorbike 0.046*** 0.045*** 0.046*** 0.042*** 
 (0.004) (0.006) (0.004) (0.004) 

Asset: Radio 0.113*** 0.112*** 0.113*** 0.111*** 
 (0.005) (0.006) (0.005) (0.005) 

Household controls Yes Yes Yes Yes 

Department Fixed effects Yes Yes Yes Yes 

Municipality controls No No No Yes 

Adjusted R2 0.283 0.277 0.283 0.288 

F_test 0.526 0.214 143.929 163.892 

Observations 1,171,243 1,171,243 1,171,243 1,171,243 

In parenthesis Robust Standard Errors clustered at municipality level. Results remain 

with Wild Bootstrapped Robust standard errors with 400 replications clustered at depart- 

ment level. F-statistic is the heteroskedasticity and cluster robust Kleibergen-Paap weak 

instrument test. With a 5% level of confidence and a potential bias of 10%, the instrument 

is not considered weak if F>16, see Stock and Yogo (2005). Columns one to four are the 

same models as Table 4. Instrumental variable: rainfall for columns 1 and 2, and quality 

as defined in equation (3). Column 1 is Model 3 of Table 4 assigning the 45 Weather 

Stations rainfall registers to closest municipality. Column 2 is the same model, but the 

way of estimating rainfall for each municipality is by interpolating values from the WS. 

Columns 3 and 4 are models 3 and 4 of Table 4 using the instrument variable as in equa- 

tion (3) 

* p<0.10, ** p<0.05, *** p<0.001 
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Table 7: The impact of SAIDI on Grid Connection (using SAIDIweighted). ENCOVI 

(2011- 2014) 

 
 (1) (2) (3) (4) 

Ln SAIDIweighted -0.125*** -0.074*** -0.071*** -0.154*** 

 (0.017) (0.016) (0.025) (0.038) 

Cooling Degree Days -0.018*** -0.011*** 0.009*** 0.014*** 
 (0.001) (0.001) (0.003) (0.003) 

Poor housing materials -0.348*** -0.272*** -0.201*** -0.201*** 
 (0.008) (0.008) (0.008) (0.008) 

Real income per capita (asinh) 0.016*** 0.013*** 0.007*** 0.007*** 

 (0.002) (0.002) (0.002) (0.002) 

Year FE Yes Yes Yes Yes 

Dwelling characteristics No Yes Yes Yes 

Household controls No No Yes Yes 

Department Controls No No Yes Yes 

Region FE No No Yes Yes 

Region FE* Year FE No No No Yes 

Adjusted R2 0.173 0.235 0.320 0.322 

Observations 12,940 12,914 12,825 12,825 

Robust clustered standard errors at PSU level (1,138). In this table all model specifica- 

tions are the same as in Table 3. Results remain if clustering is at department level and 

Wild bootstrap is performed with 400 replications. 

* p<0.10, ** p<0.05, *** p<0.01 

 
 

Secondly, Table 8 shows some robustness check with Census dataset. In the first column 

we check if the aforementioned exclusion of households with solar panels could be affect- 

ing the results in Census, and main result remains. Then, because all districts performed 

very similarly in 2018 (see Figure (2)), we include EEGSA zone. Including those districts 

do not change the negative impact. Finally, in the last two columns we perform two placebo 

tests, checking if power reliability affects some variables that beforehand should not. 

Results confirm that quality supply would be affecting only grid connection. 

Thirdly, one concern may be the presence of one department so different from the rest 

that could be misleading the results. For example, Alta Verapaz has almost the lowest 

quality level and is by far the department with lowest electrification rate. Table 9 shows 

the estimation results excluding this department. As expected, all regressions have lower 

point estimations with the only exception of column 2, which in fact is 7 p.p. larger. This 

could be due to interaction term of region and year, that can be capturing a relative better 

performance of this department between 2011 and 2014. 
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Table 8: Robustness Check: Census 

 
 (1) (2) (3) (4) 

Grid connection Grid connection Water grid Garbage 

Ln SAIDI -0.030** -0.018** -0.011 -0.006 
 (0.013) (0.009) (0.019) (0.011) 

Public Light Tariff -0.001* -0.001 0.005*** -0.000 
 (0.001) (0.001) (0.001) (0.001) 

Head of household variables Yes Yes Yes Yes 

Municipality controls Yes Yes Yes Yes 

Department Fixed effects Yes Yes Yes Yes 

Adjusted R2 0.313 0.286 0.198 0.183 

Observations 1,253,405 1,286,060 1,171,243 1,171,243 

Robust clustered standard errors at Municipality level. Model (1) includes households with solar panel.  

Model (2) includes EEGSA districts. PLT for these districts were estimated using a monthly 

consumption of 50Kw/h. Model (3) and (4) are placebo tests, using connection to water grid and garbage 

collection as outcome dummy variables. 

* p<0.10, ** p<0.05, *** p<0.01 

 

 

 

 

 

 

 

Table 9: Regressions without Alta Verapaz 
 

Outcome: Grid connection 

ENCOVI Census 

Ln SAIDI -0.115* 

(0.065) 

-0.263** 

(0.103) 

-0.018** 

(0.009) 

-0.020** 

(0.009) 

Year Fixed effects Yes Yes   

Dwelling characteristics Yes Yes   

Household controls Yes Yes   

Department Controls Yes Yes   

Region Fixed effects Yes Yes   

Region FE * Year FE No Yes   

Department Fixed effects   Yes Yes 

Municipality Controls   No Yes 

Adjusted R2 0.251 0.252 0.210 0.215 

Observations 12,153 12,153 1,046,385 1,046,385 

Columns 1 and 2 corresponds to model 3 and 4 of Table 3. Columns 3 and 

4 corresponds to models 3 and 4 of Table 4. Robust clustered standard errors 

at PSU level (1,079) in columns 1 and 2. Robust clustered standard errors at 

municipality level (249) in columns 3 and 4 

* p<0.10, ** p<0.05, *** p<0.01 
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4 Conclusion and discussion 

 
In this paper we study the relationship between reliability in power supply and rural house- 

holds grid connection in Guatemala. Taking advantage of the main attributes of two differ- 

ent household dataset, combined with a unique and objective quality data at municipality 

level for a time span of ten years, we find supported evidence that there is a positive effect 

between quality and grid connection. 

Considering quality and reliability as synonyms, we use the System Average Interrup- 

tion Duration Index (SAIDI) as the reliability measure. In the first regression setup for 

2011-2014 period, we find that a 1% reduction in outages duration at department level, 

increases probability of grid connection between 18-27 percentage points. In the second 

regression setup, with a better and more stable quality level in 2018, a 1% reduction in out- 

ages duration at municipality level increases probability in 3 percentage points. Results are 

robust to different model specifications and robustness checks. 

The interpretation of these results could be that not only good quality is a way of get- 

ting new connections, but also not losing existing ones. From a policy perspective, these 

means that grid network extension should not be done without the guarantee of achieving 

a minimum level of quality. As Chaurey and Le (2022) points out, rural infrastructure and 

maintenance are critical for rural electrification and connectivity, which are potential drivers 

for microenterprise growth. Besides, considering Grogan´s (2018) results, where rural 

Guatemalan women increased their work paid hours by 2 hours per day thanks to rural elec- 

trification, it is not difficult to realize the importance of reliability for reducing gender 

disparities and providing more opportunities for all. 

Further potential research questions arise at the end of this paper. Does historical perfor- 

mance play a role in actual levels of electrification rates? Does reliability affect households 

in a different way according to their historical connection status? And specially from a 

public policy perspective: is it the lump sum Public Tariff a barrier to electrification? Can 

we estimate the regressive effect that it has on income distribution, given that the vast ma- 

jority of rural households consume less than 50kw/h per month? Although some of our 

model specifications could be giving some evidence of its counteracting effect, we do not 
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have enough data to assure that. Some of the poorest municipalities have the highest tariffs, 

perhaps because there are not enough connections for maintaining the system or, inversely, 

they are few because it is expensive. What is clear, however, is that the actual system of 

PLT combined with INDE contribution that tries to help poorest household, loses efficiency 

with this kind of lump sum scheme. 

Not only are they potential barriers to electrification, but they are also a spoke in the 

wheel of development for many people and regions. While some areas continue to grow, 

others lag with all the potential problems that entail. 
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5 Appendix 

 
5.1 Quality data and descriptive statistics. 

 
Approximately 180 rural districts are supplied mainly by DEOCSA and 115 by DEORSA. 

Since 2011, seven districts have been created separating from a larger one. For ENCOVI 

regression setup, it is not an issue since they all belong to the same department. There is 

only one of the recent created municipalities that CNEE has no data: Petatán. Nevertheless, 

it represents less than 0.01% of observations since there are only 752 rural households in 

Census. 

When merging CNEE and Census data, there are 21 municipalities –17 departmental 

capitals– that Census considers only urban. Table 10 resumes the original CNEE data. 

Table 10: SAIDI raw statistics from CNEE 
 

DEOCSA DEORSA 

N° Different districts Mean SAIDI N° Different districts Mean SAIDI 

Year Sem 1 Sem 2 Year (Hs/semester) Sem 1 Sem 2 Total (Hs/semester) 
2006 132 140 164 4.03 80 86 97 5.16 

2007 119 123 152 6.11 89 1 91 7.67 

2008 174 174 176 9.05 109 106 111 8.80 

2009 169 161 176 9.75 109 97 111 9.10 

2010 173 166 177 8.50 109 100 111 9.65 

2011 164 158 172 10.31 109 100 111 10.57 

2012 177 177 176 32.30 110 111 113 44.97 

2013 177 177 176 26.33 111 111 113 36.30 

2014 177 176 176 41.38 111 112 114 45.23 

2015 169 165 175 11.47 112 111 114 12.30 

2016 173 173 176 13.48 112 110 114 17.87 

2017 168 168 175 14.23 112 109 114 15.39 

2018 171 167 173 10.28 111 112 114 13.73 

Note: Number of districts with no missing data by semester and year. Rural SAIDI unweighted 

mean by firm. It is expressed in total hours by semester. Source: CNEE 

 

 
 

5.2 Weather DATA: Cooling Degree Days (CDD) and Rainfall. 

 
We use three different data sources. First, National Institute of Climatology (INSIVUMEH) 

provided us daily observations from 48 weather stations (e.g. temperature, rainfall, wind), 

mainly with a time span of 2000-2018. Second, Institute of National Statistics (INE) has an 
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Figure 4: Actual and past SAIDI performance by municipality. 
 

 

 

Figure 5: Zonal distribution of Utility Firms and rainfall in 2014 
 

 

 

Figure 6: Social Tariff and total subsidies (INDE, 2019). 
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Table 11: Descriptive Statistics: ENCOVI 

 
 DEOCSA 

2011 2014 

mean sd mean sd 

DEORSA 

2011 2014 

mean sd mean sd 

Rural Households (%) 57.51 49.4 54.55 49.8 66.0 47.3 64.17 47.9 

Rural SAIDI (hs/semester) 10.31 8.3 41.38 29.22 10.36 6.9 45.31 23.73 

Rural households connected to grid (%) 71.91 45.0 79.71 40.2 52.32 50.0 54.79 49.8 

Dwelling variables     

Shares the dwelling (%) 2.09 14.3 0.44 6.6 1.60 12.6 0.18 4.3 

Owner (%) 85.73 35.0 87.04 33.6 85.86 34.9 87.60 33.0 

Poor housing materials (%) 50.15 50.0 47.40 49.9 57.93 49.4 56.93 49.5 

Kitchen (%) 51.80 50.0 71.12 45.3 51.15 50.0 51.25 50.0 

Own Toilet access (%) 7.78 26.8 9.57 29.4 4.67 21.1 5.78 23.3 

Connected to water grid (%) 62.33 48.5 70.19 45.8 54.33 49.8 57.11 49.5 

Overcrowd (%) 51.89 50.0 45.98 49.8 50.83 50.0 47.33 49.9 

Head of Household variables     

Age 44.78 15.5 45.98 15.7 43.84 15.6 45.63 15.3 

Female (%) 17.66 38.1 17.47 38.0 15.51 36.2 13.91 34.6 

Recent migrant (< 5 years) (%) 1.90 13.6 0.77 8.7 2.29 15.0 2.29 15.0 

Indigenous (%) 61.77 48.6 58.31 49.3 37.96 48.5 38.29 48.6 

Does not speak Spanish (%) 10.64 30.8 10.61 30.8 17.94 38.4 16.39 37.0 

Married (%) 82.23 38.2 82.39 38.1 82.63 37.9 84.33 36.4 

Works (%) 83.92 36.7 84.21 36.5 83.99 36.7 87.37 33.2 

Works as a farmer (%) 60.54 48.9 58.52 49.3 62.10 48.5 62.87 48.3 

Works as a family worker (%) 0.27 5.2 0.29 5.4 0.69 8.3 0.39 6.2 

A kid (7-14) is working in the house 2.91 16.8 2.85 16.6 1.10 10.4 3.34 18.0 

The house has received remittances 0.11 0.3 0.12 0.3 0.08 0.3 0.09 0.3 

Level of education: primary (%) 56.45 49.6 61.30 48.7 58.22 49.3 58.30 49.3 

Income per capita (Quetzales) 224.61   283.8 449.52   537.8 264.45   591.5 537.00   1047.3 

Observations 3,319 2,695 3,958 2,970 

 

 

 

 

 
Figure 7: Bill simulation of 50kw/h consumption by municipality. 
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Table 12: Descriptive Statistics: Census 

 

DEOCSA 

2018 

mean sd 

DEORSA 

2018 

mean sd 

Rural Households (%) 60.44 48.9 61.57 48.6 

Rural SAIDI(hs/semester) 10.28 5.8 13.80 6.6 

Public Light Tariff (Quetzales) 29.97 9.3 38.45 13.0 

Rural households connected to grid (%) 84.65 36.0 65.64 47.5 

Rural households with solar panel (%) 3.77 19.05 9.91 29.9 

Dwelling variables   

Shares the house (%) 1.80 13.3 1.95 13.8 

Owner (%) 88.22 32.2 86.61 34.1 

Poor housing materials (%) 40.38 49.1 50.95 50.0 

Kitchen (%) 68.31 46.5 68.66 46.4 

Own toilet (%) 24.19 42.8 22.77 41.9 

Water grid access (%) 62.62 48.4 58.07 49.3 

Overcrowd (%) 32.24 46.7 30.21 45.9 

Receives remittances (%) 12.17 32.7 7.91 27.0 

Asset: motorbike (%) 16.22 36.9 19.36 39.5 

Asset: Radio (%) 60.39 48.9 48.97 50.0 

Head of House variables   

Age (years) 45.94 15.8 45.55 16.4 

Female (%) 21.68 41.2 19.46 39.6 

Married (%) 82.38 38.1 80.89 39.3 

Indigenous (%) 60.66 48.9 46.09 49.8 

Migrant (%) 10.95 31.2 21.47 41.1 

Recent migrant (< 5 yrs) (%) 1.33 11.4 2.09 14.3 

Does not speak Spanish (%) 0.47 6.8 1.85 13.5 

Works (%) 64.20 47.9 72.13 44.8 

Works as a farmer (%) 38.84 48.7 48.02 50.0 

Works as a retailer (%) 6.99 25.5 5.05 21.9 

Works as Self Employer (%) 27.11 44.5 40.86 49.2 

HH works as family worker (%) 2.68 16.1 1.60 12.5 

HH completed at least Primary 63.42 48.2 62.90 48.3 

A kid (7-14) is working in the house (%) 1.20 10.9 1.18 10.8 

Observations 671,572 516,747 

Note: All summary statistics, except the first four variables, are calculated 

without taking into account households that have a solar panel. 



36  

 

 

 

 

almost complete monthly register of rainfall from 49 weather stations. Finally, we comple- 

ment this information with satellite images from NASA. 

We follow the Guide of Climatological Practices (World Meteorological Organization, 

2017) that recommends not calculating a monthly mean if either of this criteria is not sat- 

isfied: missing observations for 11 or more days; or for a period of 5 or more consecutive 

days during the month. In case this condition is not satisfied, we assume a missing value 

for that specific month. 

Cooling Degree Days (CDD) is calculated as the difference between mean temperature 

and 18 Celsius degrees. If negative, the value of CDD for that day is zero. Due to a large 

number of missing values in 2018, we use a Time Averaged Map of Surface air tempera- 

ture monthly 0.1 degrees from NASA website (FLDAS model), and we calculate the zonal 

statistics for each municipality with Qgis software (McNally et al., 2018). 

With weather station data we follow these steps: 1) consolidate and get an 

homogeneous dataset at weather station level; 2) calculate distance between the capital city 

of each munic- ipality to its closest weather station; 3) assign each weather station record 

to that district21 and 4) collapse data at department level for ENCOVI. 

Once obtained a daily measure of CDD we average first by month and then by year. 

We follow this procedure because as there are some missing values, we estimate monthly 

missing values with historical data, and then we average. After checking data consistency, 

the final dataset consists of 42 weather stations for 2011 and 2014. 

As regards rainfall, our main dataset provides from INE. If a monthly record is missing, 

we check if that data is in INSIVUMEH dataset. If we can not complete the register, we 

estimate the missing value. Unfortunately, there are some weather stations with almost all 

2018 monthly values were unrecorded, so we must dismiss them in our 2018 estimation. 

The final rainfall dataset is 45 weather stations. 

21Mean distance from the city to closest weather station is 15km 
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5.2.1 Instrumental variable discussion 

 
Our main argument for considering rainfall as an instrumental variable is that heavy rainfalls  

where roads are mainly unpaved, could be a potentially exogenous source of variation in 

reliability. This idea entails an ideal granular dataset: rainfall and quality data should be 

even more disaggregated. 

Although we do not have that ideal dataset, we can test our main hypothesis. First, 

if the main drivers of low quality are unpaved roads and isolated communities, we should 

expect no effect in the urban area or at least, rainfall should result a weaker instrument. 

Second, as there is seasonality in rainfall, we should also expect —following our hypothesis 

of quality affected by rain in rural area— a better performance of the IV strategy in the 

second semester. Table 14 confirms the weakness of the instrument for urban area, and the 

robustness of the instrument in second semester, more related to the hurricane season. 

Up to this point, it seems reasonable that our instrument at department level could be 

reflecting the underlying phenomena. Nevertheless, the way we measure rainfall in Census 

regression —at municipality level— fails to be a good instrument. A first plausible inter- 

pretation is that 45 weather stations are not enough to represent the variability in rainfall 

over 340 municipalities across the country. So, we test two other alternatives: interpolating 

weather station rainfall data or using NASA satellite images.22 Using the Giovani APP 

from NASA website, we obtain the annual map accumulated rainfall for 2018. Each image 

represents a spatial resolution of around 100km2. Then, with QGis software we estimate 

the average annual rainfall for each municipality. Although satellite information provides 

variation across municipalities (there are not two municipalities with the same rain record), 

we also acknowledge that rainfall variance is lower reducing the possibility of registering 

extreme events, useful for our identification strategy. And the last but not the least possible 

reason, we lack variation in time, which is present in ENCOVI regressions. 

Once the 45 stations are collapsed by department, we can compare these estimations 

with NASA database in Table 13. Reasonably, summary statistics that come from point 

estimates –weather stations– have more standard deviation that satellite images. 

22See Huffman et al. (2019) 
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Table 13: Weather data 
 

 Rainfall Cooling Degree Days 

Weather Station Data 

Year 2011 (WS=49) 

Year 2014 (WS=49) 

Year 2018 (WS=45) 

Municipality level (340) 

Using 45 Weather Stations 

Zonal statistics to interpolation image 

Zonal statistics to NASA satellite GPM image 

Mean Std Min Max Mean Std Min Max 

2,019.07 1,001.12 846.2 4,843.6 4.97 3.81 0 10.61 

1,717.66 965.54 440.1 5,026.7 5.11 3.71 0 10.99 

1,483.11 949.68 409.6 4,392.2 2.60 3.14 0 9.74 

1,520.37 1,006.35 409.6 4,392.2     

1,446.72 244.34 874.63 2,636.77     

1,742.78 456.25 1,032.73 2,733.13     

Note: Rainfall is in millimetres and Cooling Degrees Days in Celsius. 2018 CDD corresponds to FLDAS 

annual average surface temperature. 

Source: INE, INSIVUMEH and NASA 

 

 

 

 

 
 

 

 

 

Table 14: Robustness check: Instrument 

 
 (1) 

IV_urban 

(2) 

IV_1 Sem 

(3) 

IV_2Sem 

Ln SAIDIurban -0.383   

 (0.207)*   

 [0.303]   

Ln SAIDI_1 semester  -0.823  

  (0.326)**  

  [0.108]  

Ln SAIDI_2 semester   -0.205 
   (0.041)*** 
   [0.005]*** 

Adjusted R2 0.210 0.300 0.325 

F_test 4.289 3.483 42.949 

Observations 6,856 12,825 12,825 

Robust Clustered standard errors at department level in parenthesis. 

Model 1 estimates the IV model for urban area. Model 2 uses 

SAIDI and rain for first semester in rural area; and model 3 does 

the same but with second semester. In square brackets the p-value 

of Wild Bootstrapped Clustering with 400 replications. All models 

have household and state variable controls, year and region fixed 

effects, and interaction between region and year. 

* p<0.10, ** p<0.05, *** p<0.001 
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