This paper examines the existence of time trends in the infant mortality rates in a number of countries in the twentieth century. We test for the presence of deterministic trends by adopting a linear model for the log-transformed data. Instead of assuming that the error term is a stationary I(0), or alternatively, a non-stationary I(1) process, we allow for the possibility of fractional integration and hence for a much greater degree of flexibility in the dynamic specification of the series. Indeed, once the linear trend is removed, all series appear to be I(d) with 0<d<1, implying long-range dependence. As expected, the time trend coefficients are significantly negative, although of a different magnitude from those obtained assuming integer orders of differentiation.
Infant Mortality Rates. Time trends and fractional integration
Autores
Luis Alberiko Gil-Alaña
Guglielmo Maria Caporale
Tipo
Artículo
Journal
Journal of Applied Statistics Vol. 42, No. 3
Páginas
589-602
Fecha
02-03-2015
Resumen