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1. Introduction 

 

International travel to South Africa has surged since the end of apartheid. In 

1994, the year of South Africa’s first democratic elections, the country has improved its 

tourism position from the 52nd most visited destination in the world to the 17th most 

visited in 2005. In 1994, only 3.9 million foreign visitors arrived in the country. In 

2004, international arrivals had more than doubled to 6.7 million, and in 2007, a total of 

9.07 million foreigners visited South Africa _ an 8.3% increase over 2006. Moreover, 

during the last ten years the country has expanded its tourism plant significantly. This 

includes growth in the number of hotels, guest houses, game farms, lodges and even the 

number of airlines servicing the country. From a demand side, the country has 

experienced an increase of more than 100% in tourist arrivals over the same period. 

This growth has been despite many problems and threats experienced on the African 

continent such as political instability, poverty, disease and low level of development 

(Saayman and Saayman, 2008), and has positioned South Africa as Africa’s leading 

tourist destination. 

 

 Directly and indirectly, tourism constitutes approximately 7% of employment in 

South Africa (TBCSA, Tourism Business Council of South Africa). Ideally placed to 

create new jobs and to add value to the country’s many natural and cultural resources, 

tourism has been earmarked by the government as one of South Africa’s growth sectors.  

 

 The challenge for a country like South Africa, as for most other tourist 

destinations is to sustain tourism growth and to improve the country’s position among 

the most visited countries (Saayman, 2006). In order to address the sustainability issue it 



is important to understand the stochastic properties of the time series related with the 

tourism sector since the past history of the data can give us information about the 

stationary/nonstationary and the mean-reversion/non-mean-reversion behaviour of the 

series. This is crucial to determine the nature of the shocks, to know if they have 

permanent or transitory effects. Clearly, different policy measures should be 

implemented depending on the nature of the shocks, and this is clearly connected with 

the mathematical models associated to the tourism data. In a shock we mean an event 

which takes place at a particular point in the series, and it is not confined to the point at 

which it occurs. A shock is known to have a temporary or short term effect, if after a 

number of periods the series returns back to its original performance level. On the other 

hand, a shock is known to have a persistent or long term impact if its short run impact is 

carried over forward to set a new trend in performance. In the context of the I(d) 

processes examined in this work, if a series is stationary I(0) shocks disappear relatively 

fast and there is no need for strong policy actions to recover the original levels. If the 

series is fractionally integrated (or I(d)) with d in the range (0, 1) shocks generally tend 

to take longer to disappear than in the previous case, with an hyperbolic rate of decay of 

the autocorrelations as opposed to the exponential decay associated to the stationary I(0) 

AR(MA) processes. Finally, if the series possesses a unit root (i.e., it is I(1)), shocks 

will be permanent and will persist forever. In this latter case, strong policy measures 

should be implemented if we want to recover the original mean of the process. 

 

 In this paper we will examine the orders of integration in eight South African 

series related to the tourism sector. In doing so, we will be able to determine if shocks 

associated to the series are mean reverting or not, which is important in order to assist in 

future policy formulation towards improving or revitalising the tourism sector.  



 

The article is structured as follows: Section 2 presents a brief literature review 

on tourism modelling and forecasting. Section 3 describes the methodology employed. 

Section 4 presents the dataset. Section 5 displays the empirical results, while Section 6 

contains some concluding comments and extensions. 

 

2. Literature review 

 

There is a wide variety of articles on modelling and forecasting tourist data. 

These articles can be grouped into two large categories: those using time series 

techniques and those using panel data studies. Within the time series framework we find 

articles using log-linear and cointegration analysis (Kulendran and Witt, 2001; Lim and 

McAleer, 2002; Dritsakis, 2004; Lim, 2004; Algieri, 2006); unit root testing procedures 

(Narayan, 2005; Bhattacharya and Narayan, 2005); persistence in volatility models 

(Hoti, León and McAleer, 2006; Hoti, McAleer and Shareef, 2007 and Kim and Wong, 

2006), etc. 

  

Using multivariate techniques, Syriopoulos (1995), Kulendran (1996), 

Kulendran and King (1997), Seddighi and Shearing (1997), Kim and Song (1998), Vogt 

and Wittayakorn (1998) and others documented high persistence in tourism and arrivals 

time series. Most of these authors argue that the tourism series are nonstationary I(1) 

processes, implying thus the existence of a unit root and permanent effects of shocks. 

On the other hand, García-Ferrer and Queralt (1997), Chu (1998), Kim (1999), Lim and 

McAleer (2001, 2002), Goh and Law (2002), Gustavsson and Nordström (2001) and 

Brännäs et al. (2002) employed pure time series analytical models, some of these 



authors arguing that the univariate time series approach may be preferable to the 

multivariate models from a forecasting viewpoint.1 

 

In this paper we use methodologies based on fractional integration. This 

approach enables the identification of the level of persistence of a series in a continuous 

way and therefore overcomes the restrictive view of traditional econometric methods 

which identifies a series as either persistent (i.e. I(1)) or non-persistent (i.e., I(0)), but is 

unable to evaluate the middle term of the persistence level. Fractionally integrated 

techniques have been recently applied to tourism time series data in a number of papers. 

Thus, for example, Chu (2008) uses an AutoRegressive Fractionally Integrated Moving 

Average (ARFIMA) model to forecast monthly international tourist arrivals in 

Singapore. Seasonal long memory models have been applied to tourist arrivals in Gil-

Alana et al. (2004) and Gil-Alana (2005) and other recent papers with fractional 

integration in tourism data are Cunado et al. (2008a,b). Though this paper does not 

include any new methodological contribution, it is important to examine the degree of 

persistence in tourism-related series in South Africa so that we could determine the need 

of the implementation of policies to recover the level of the series in the event of 

negative shocks. 

  

In the context of South African tourism data, Burger et al. (2001) present a 

survey of time series models to predict the US demand for travel to Durban. They used 

a variety of specifications including naïve, moving average, decomposition, single 

exponential smoothing, ARIMA and neural networks, and conclude that the latter 

performs the best. In a different context, Briedenhann and Wickens (2003) investigated 
                                                 
1  Alternatively, artificial intelligence, as a group of emerging tourism forecasting techniques (including 
genetic algorithms, fuzzy logic, artificial neural networks and support vector machines, see e.g., Wang, 
2004; Kon and Turner, 2005) has also emerged in recent years. 



the development of rural tourism routes in South Africa, while Naude and Saayman 

(2005) examined the determinants of tourist arrivals in a panel of 43 African countries 

including South Africa. It is concluded in the paper that attention should be given to 

improving the overall stability of the continent, and the availability and quantity of 

tourism infrastructure. We should finally note that we were unable to find papers 

dealing with the persistence of South African tourism data, and, in this context, the use 

of I(d) models in the present paper seems overdue. 

 

3. Materials and methods 

 

Two well known features commonly present in tourism series are the 

dependence across time of the observations and the seasonality of the data. With respect 

to the time dependence various approaches have been adopted. Until the 80s, the most 

common one was to assume a deterministic function of time, generally under the 

assumption that the detrended series was stationary I(0). Later, and especially after the 

seminal work by Nelson and Plosser (1982), many series were found to be I(1), under 

the presumption that the first differences of the data were stationary I(0). These two 

approaches, usually named as “trend stationarity” and “stochastic difference” prevailed 

in economics until quite recently. During the last twenty years or so, a new approach 

has emerged that models many series in terms of fractionally integrated processes. That 

means that the number of differences required to render a series stationary I(0) may not 

necessarily be an integer value (1 in most of the cases) but a real one that can be 

between 0 or 1, or even above 1. This approach is clearly more general than the 

previous ones in the sense for example that it considers the I(1) or unit root model (the 



“stochastic difference” approach) as a particular case, and thus allows a much richer 

degree of flexibility in the dynamic specification of the series.  

 

On the other hand, seasonality is another issue that should be taken into account 

when modelling tourist data, and depending on the nature of the seasonal component of 

the series different approaches should be adopted. 

 

 Throughout this paper we will consider the following process: 

 

,...,2,1, =++= txty tt βα    (1) 

...,2,1,)1( ==− tuxL tt
d ,   (2) 

 

where yt corresponds to the original time series; � and � are the coefficients 

corresponding to the intercept and the time trend respectively; d may be a real value, 

and ut is supposed to be I(0), defined, for the purpose of the present work, as a 

covariance stationary process with a spectral density function, which is positive and 

finite at the zero frequency. Thus, ut in (2) may be a white noise process but it may also 

allow for weak autocorrelation of the ARMA-form. Note that this is a very general 

specification in the sense that it includes the “trend stationary” representation in case of 

d = 0, and the unit root advocated by many authors in case of d = 1. Seasonal AR 

processes will be incorporated throughout the error term. 

 

If d > 0 in (2), xt (and thus yt) it is said to be long memory, so-named because of 

the strong association between observations widely separated in time. Note that the 



polynomial (1–L)d in (2) can be expressed in terms of its Binomial expansion, such that, 

for all real d, 
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In this context, the parameter d plays a crucial role since it will be an indicator of the 

degree of dependence of the time series. Thus, the higher the value of d is, the higher 

the level of association will be between the observations. These processes are 

characterized because the spectral density is unbounded at the zero frequency. This was 

first noticed in the 60s by Granger (1966) and Adelman (1965), who pointed out that 

most aggregate economic time series have a typical shape where the spectral density 

increases dramatically as the frequency approaches zero. However, differencing the data 

frequently leads to overdifferencing at the zero frequency. Fifteen years later, Robinson 

(1978) and Granger (1980) showed that aggregation could be a source of fractional 

integration2. Since then, fractional processes have been widely employed to describe the 

dynamics of many time series (see, e.g. Diebold and Rudebusch, 1989; 1991; Sowell, 

1992; Baillie, 1996; Gil-Alana and Robinson, 1997; etc.). 

 

                                                 
2 These authors showed that fractionally integrated data could arise as a result of aggregation when data 
are aggregated across heterogeneous autoregressive (AR) processes; data involving heterogeneous 
dynamic relationships at the individual level are then aggregated to form the time series. 



 The methodology employed in this work is based on the Whittle function in the 

frequency domain (Dahlhaus, 1989) along with a testing procedure developed by 

Robinson (1994) that permits us to test different hypotheses under the null. In fact, the 

latter is a Lagrange Multiplier (LM) procedure that is supposed to be the most efficient 

method in the context of fractional integration. It tests the null hypothesis Ho: d = do for 

any real value do, in (1) and (2) with a standard (normal) null limit distribution. 

Moreover, this standard behaviour holds independently of the inclusion or not of 

deterministic terms and the way of modelling the I(0) disturbances. The functional form 

of Robinson’s (1994) tests can be found in any of the numerous empirical applications 

of his tests (e.g. Gil-Alana and Robinson, 1997; Gil-Alana, 2000; etc.) 

 

4. Data 

 

The data examined in this paper correspond to the following variables all 

referring to the total tourism industry: “Stay units available” (SUA); “Stay units nights 

sold” (SUNS); “Occupancy rate” (OR); “Income per stay unit nights sold “ (IPSUNS); 

“Income from accommodation” (IFA); “Income from restaurant and bar sales” (IFRBS); 

“Other income” (OI); and “Total income” (TI), monthly, for the time period September 

2004 – August 2009. These data were obtained from the online service “Statistics South 

Africa” (http://www.statssa.gov.za). (See Table 1 for each time series numbering). 

 

[Insert Table 1 and Figure 1 about here] 

 

 Figure 1 displays each of the time series plots. We observe a slight increase 

across time, particularly in the income-related series (IPSUNS, IFA, IFSRBS, OI and 



TI). On the other hand, the three time series related to accommodation issues (SUA, 

SUNS and OR) may have a stationary appearance. 

 

[Insert Figure 2 about here] 

 

 Figure 2 displays the first 25 sample autocorrelation values for each series. We 

observe significant values in all cases with a slow decay that may be consistent with a 

simple autoregressive model but also with a fractionally integrated structure. Seasonal 

lags appear significant in the cases of SUNS, OR and IFRBS. 

 

5. Empirical results 

 

Table 2 displays the estimates of d (and the 95% confidence bands) in the model 

given by (1) and (2) under the assumption that the error term ut in (2) is white noise. We 

report the results for the three cases of no regressors in the undifferenced regression 

model (1) (i.e, � = � = 0 a priori); an intercept (� unknown and � = 0 a priori), and an 

intercept with a linear time trend (� and � unknown). 

  

The first thing we observe in this table is that if we do not include regressors the 

unit root hypothesis (i.e. d = 1) cannot be rejected in any of the series. Including an 

intercept or an intercept with a linear time trend, the unit root cannot be rejected in any 

of the income series with the exception of IFRBS where d is found to be strictly smaller 

than 1. The same mean reverting behaviour is observed for the three accommodation 

series (SUA, SUNS and OR) where d is strictly below 1. 

 



[Insert Tables 2 and 3 about here] 

 

 Table 3 displays the parameter estimates of the selected model for each time 

series according to the specification of the deterministic terms. It is observed that only 

for IRFBS the time trend is required, while for the remaining series an intercept seems 

to be sufficient to describe the deterministic part. We see that the estimates of d widely 

vary from one series to another. The lowest degrees of integration are obtained in the 

cases of SUNS (d = 0.475) and OR (d = 0.493), followed by IFRBS (d = 0.512) and 

SUA (d = 0.758). In all these series the estimates are strictly smaller than 1 implying 

long memory and mean reverting behaviour. Estimates of d below 1 are also observed 

in the cases of OI (d = 0.782), IFA (d = 0.800) and TI (d = 0.812), though in these three 

series the unit root null cannot be rejected. The highest degree of integration is obtained 

at IPSUNS (d = 1.013) and the unit root cannot be rejected at the 5% level. Thus, 

according to this simple specification, all series are I(d), being d strictly smaller than 1 

(and thus showing mean reversion) in case of the accommodation series, and with 

values of d around 1 (the unit root case) for the income series. 

 

The results presented so far assume that the time dependence between the 

observations is fully captured through the fractional differencing parameter d. In what 

follows, we include another source of dependence throughout the error term. The 

standard way of modelling such I(0) dependence is by using stationary ARMA models. 

In this paper, however, we employ an alternative approach that is based on the 

exponential spectral model of Bloomfield (1973). This is a non-parametric method that 

produces autocorrelations decaying exponentially as in the ARMA case. In this 

approach, the spectral density function is given by: 
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where m is the number of parameters required to describe the short run dynamics of the 

series. Bloomfield (1973) showed that the logarithm of an estimated spectral density 

function is often found to be a fairly well-behaved function and can thus be 

approximated by a truncated Fourier series. He showed that the spectral density of an 

ARMA process can be well approximated by (3). Moreover, this model is stationary 

across all values of �, and the model accommodates extremely well in the context of 

fractionally integrated models.3 The results using this model (with m = 1) for the three 

cases of no regressors, an intercept, and an intercept with a linear trend are displayed in 

Table 4. 

 

 We notice that most of the estimates are in the range (0, 1) though we also 

observe some negative values in the case of the inclusion of a linear time trend. 

Negative values of d imply anti-persistence (Mandelbrot, 1977)4 and suggest a kind of 

competition with the error term in describing the time dependence.  

 

[Insert Tables 4 and 5 about here] 

 

 Table 5 displays the estimates for each series. The time trend is now required in 

all cases except in one series (SUA). Once more the estimates of d widely vary across 

                                                 
3 See Gil-Alana (2004) for a paper relating fractional integration with the exponential spectral model of 
Bloomfield (1973) in the context of Robinson’s (1994) tests.  
4 A process is said to be anti-persistent if it reverses itself more often than a random series would. 
 



the series from -0.317 (IFRBS) to 0.726 (SUA), and the 95% confidence intervals are 

now very wide, including the I(0) hypothesis in all except one series (SUA). For the 

latter, the I(1) null cannot be rejected. 

 

 Finally, seasonality is also taken into account, and a seasonal AR(1) process is 

assumed for the error term.5 The results are displayed across Tables 6 and 7. We first 

observe that most of the estimates are in the range (0.5, 1) suggesting that according to 

this specification the series are nonstationary though mean reverting.  

 

[Insert Tables 6 and 7 about here] 

 

 

 In Table 7 we see that only for IPSUNS and IFRBS the time trends are required. 

In all the other cases, the intercept is sufficient to describe the deterministic part. If we 

focus now on the estimates of d we see that the lowest value is obtained for IFRBS 

(with d = 0.555) followed by OR (d = 0.666) and SUNS (d = 0.668). Then, come SUA 

(d = 0.775), OI (d = 0.784), IPSUNS (d = 0.792) and IFA (d = 0.796), and the highest 

degree of dependence is obtained for TI, with d = 0.853. Also, note that there are three 

income series where the unit root cannot be rejected; they are OI, IPSUSN and TI, while 

mean reversion is detected in the remaining five series. If we look at the seasonal AR 

coefficients we notice that the highest values correspond to OR, SUNS and IFRBS, 

which are precisely the series with the lowest values of d, indicating that the two 

parameters might be competing in describing the time dependence. 

 

                                                 
5 Higher seasonal AR processes lead essentially the same results. 
 



 Looking at the results displayed in this work it seems reasonable to argue that 

the model that combines fractional integration with seasonal autoregressions, is the one 

that should be taken into consideration for these series given the significancy of the two 

parameters that describe the time dependence, i.e., the fractional differencing parameter 

d, and the seasonal AR coefficient.6 Figure 3 displays the first 120 impulse responses 

for the selected model for each series according to the parameter estimates reported in 

Table 7. 

 

[Insert Figure 3 about here] 

 

 We observe that the responses decay to zero in all cases though at a very slow 

rate. We also notice that seasonality is important in the majority of the series, the two 

exceptions being the “Stay Units Available” series (SUA) and “Other Income” (OI). 

The fastest processes of convergence seem to take place for SUA, IFRBS and OI. Table 

8 displays the numerical values of the first 12 impulse responses, while Table 9 focuses 

on the first 10 multiple of 12 responses. 

 

[Insert Tables 8 and 9 about here] 

 

 Starting with the short run responses (in Table 8) we see that for IFRBS, SUNS 

and OR, the responses of a shock are smaller than 0.5 after three periods, while for the 

remaining series, half of the effect remains even after one year. If we look now at the 

seasonal long run effects (in Table 9) we observe that the most persistent effects take 

                                                 
6 Moreover, we conducted several diagnostic tests on the residuals of the differenced models and the 
results indicate that the model with seasonal AR(1) error produces the best results. 



place in the series OR and IF, while the less persistent ones are IFRBS and especially 

OI and SUA. 

 

6. Final comments and conclusions 

 

In this paper we have examined several time series related with the tourism 

sector in South Africa. The aim was to determine the nature of the shocks in the series 

and for this purpose we employed fractionally integrated techniques. The series 

examined were: the number of stay units available, the number of stay unit nights sold, 

the occupancy rate, and five more series related with income in the tourism sector: 

income per stay units sold, income from accommodation, income from restaurants and 

bar sales, other income and total income.  

 

The results indicate that the eight series examined are mean reverting, implying 

that shocks have transitory though long-lasting effects. Moreover, the level of 

persistence substantially changes from one series to another and the highest degrees of 

persistence are obtained in the short run in the cases of Total Income, Income From 

Accommodation, and Income Per Stay Units Night Sold (see Table 8), while the 

seasonal effects seem particularly important in the cases of Occupancy Rate and Income 

From Accommodation (see Table 9). Therefore, in the event of a negative exogenous 

shock stronger measures must be adopted in relation with these series to recover the 

original levels. Other issues such as the presence of asymmetric effects of the shock, the 

presence of structural breaks or even non-linearities in tourism data will be examined in 

future papers. 
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Table 1: Time Series analyzed in the article 

Acronym Description Number 

SUA Stay Units Available A64100 

SUNS Stay Units Nights Sold B64100 

OR Occupancy Rate C64100 

IPSUNS Income Per Stay Units Nights Sold D64100 

IFA Income From Accommodation E64100 

IFRBS Income From Restaurant and Bar 
Sales 

F64100 

OI Other Income G64100 

TI Total Income H64100 
 Data source: Statistics South Africa (http://www.statssa.gov.za). 

 
 
 
 



 
Table 2: Estimates of d under the assumption of white noise errors 

Time Series No regressors An intercept A linear time trend 

SUA 0.935 
(0.778,   1.165) 

 

0.758 
(0.636,   0.953) 

 

0.763 
(0.644,   0.954) 

 SUNS 0.869 
(0.681,   1.132) 

 

0.475 
(0.343,   0.711) 

 

0.440 
(0.255,   0.710) 

 OR 0.865 
(0.679,   1.124) 

 

0.493 
(0.334,   0.771) 

 

0.464 
(0.243,   0.770) 

 IPSUNS 0.909 
(0.706,   1.180) 

 

1.013 
(0.800,   1.330) 

 

1.012 
(0.756,   1.332) 

 IFA 0.847 
(0.560,   1.168) 

 

0.800 
(0.635,   1.103) 

 

0.789 
(0.561,   1.103) 

 IFRBS 0.741 
(0.449,   1.039) 

 

0.512 
(0.405,   0.714) 

 

0.409 
(0.189,   0.704) 

 OI 0.765 
(0.481,   1.172) 

 

0.782 
(0.556,   1.163) 

 

0.776 
(0.501,   1.163) 

 TI 0.852 
(0.568,   1.188) 

 

0.812 
(0.640,   1.123) 

 

0.805 
(0.582,   1.123) 

  
 
 
 
 
Table 3: Parameter estimates in the selected models across Table 2 

Time Series Fract. Diff. Par. Intercept Linear time trend 

SUA 0.758 
(0.636,   0.953) 

 

107.388 
(135.856) 

---------- 

SUNS 0.475 
(0.343,   0.711) 

 

1520.029 
(22.938) 

---------- 

OR 0.493 
(0.334,   0.771) 

 

46.089  
(22.126) 

---------- 

IPSUNS 1.013 
(0.800,   1.330) 

 

409.433 
(19.156) 

---------- 

IFA 0.800 
(0.635,   1.103) 

 

608.060 
(8.630) 

---------- 

IFRBS 0.512 
(0.405,   0.714) 

 

210.219 
(10.911) 

1.696   
(3.025)  

OI 0.782 
(0.556,   1.163) 

 

152.970 
(2.238) 

---------- 

TI 0.812 
(0.640,   1.123) 

 

970.876 
(7.401) 

---------- 

 
 



 
Table 4: Estimates of d under the assumption of Bloomfield-type errors 

Time Series No regressors An intercept A linear time trend 

SUA 0.826 
(0.507,   1.216) 

 

0.726 
(0.512,   1.015) 

 

0.738 
(0.537,   1.015) 

 SUNS 0.588 
(0.019,   1.083) 

 

0.333 
(0.142,   0.594) 

 

0.051 
(-0.785,   0.546) 

 OR 0.604 
(0.008,   1.087) 

 

0.260 
(0.057,   0.555) 

 

-0.173 
(-0.769,   0.503) 

 IPSUNS 0.539 
(0.190,   1.150) 

 

0.678 
(0.524,   1.164) 

 

0.104 
(-0.380,   1.167) 

 IFA 0.241 
(0.169,   0.917) 

 

0.578 
(0.424,   0.878) 

 

0.086 
(-0.633,   0.875) 

 IFRBS 0.143 
(0.085,   0.966) 

 

0.428 
(0.258,   0.643) 

 

-0.317 
(-0.740,   0.490) 

 OI 0.274 
(0.139,   0.630) 

 

0.415 
(0.232,   0.735) 

 

0.126 
(-0.319,   0.706) 

 TI 0.266 
(0.181,   0.884) 

 

0.576 
(0.417,   0.884) 

 

0.259 
(-0.381,   0.872) 

  
 
 
 
Table 5: Parameter estimates in the selected models across Table 4 

Time Series Fract. Diff. Par. Intercept Linear time trend 

SUA 0.726 
(0.512,   1.015) 

 

107.450 
(139.27) 

---------- 

SUNS 0.051 
(-0.785,   0.546) 

 

1465.291 
(46.648) 

3.852   
(4.367) 

OR -0.173 
(-0.769,   0.503) 

 

44.062  
(85.676) 

0.115   
(7.360)  

IPSUNS 0.104 
(-0.380,   1.167) 

 

387.135 
(52.768) 

4.185   
(20.592) 

IFA 0.086 
(-0.633,   0.875) 

 

561.863 
(23.757) 

8.496   
(12.913) 

IFRBS -0.317 
(-0.740,   0.490) 

 

197.973 
(65.136) 

2.144   
(21.933) 

OI 0.126 
(-0.319,   0.706) 

 

122.405 
(4.935) 

4.178   
(6.107)  

TI 0.259 
(-0.381,   0.872) 

 

913.898 
(13.950) 

13.654  
(7.612)  

 
 



 
Table 6: Estimates of d under the assumption of seasonal AR errors 

Time Series No regressors An intercept A linear time trend 

SUA 0.939 
(0.793,   1.158) 

 

0.775 
(0.654,   0.962) 

 

0.779 
(0.660,   0.962) 

 SUNS 0.924 
(0.760,   1.157) 

 

0.668 
(0.559,   0.825) 

 

0.664 
(0.545,   0.826) 

 OR 0.926 
(0.765,   1.152) 

 

0.666 
(0.554,   0.827) 

 

0.660 
(0.536,   0.826) 

 IPSUNS 0.879  
(0.697,   1.121) 

 

0.857 
(0.737,   1.126) 

 

0.792 
(0.562,   1.128) 

 IFA 0.806 
(0.609,   1.032) 

 

0.796 
(0.698,   0.953) 

 

0.766 
(0.633,   0.945) 

 IFRBS 0.781 
(0.596,   1.000) 

 

0.624 
(0.536,   0.763) 

 

0.555 
(0.408,   0.744) 

 OI 0.769 
(0.481,   1.178) 

 

0.784 
(0.557,   1.170) 

 

0.778 
(0.501,   1.170) 

 TI 0.849 
(0.631,   1.116) 

 

0.853 
(0.687,   1.131) 

 

0.847 
(0.651,   1.130) 

  
 
 
 
Table 7: Parameter estimates in the selected models across Table 6 

Time 
Series 

Fract. Diff. Par. Intercept Linear time trend AR 

SUA 0.775 
(0.654,   0.962) 

 

107.360  
(133.639) 

---------- -0.153 

SUNS 0.668 
(0.559,   0.825) 

 

1471.330 
(15.522) 

---------- 0.792 

OR 0.666 
(0.554,   0.827) 

 

45.225   
(15.943) 

---------- 0.819 

IPSUNS 0.792 
(0.562,   1.128) 

 

408.940 
(19.181) 

3.336   
(2.487)  

0.563 

IFA 0.796 
(0.698,   0.953) 

 

608.862 
(8.541) 

---------- 0.735 

IFRBS 0.555 
(0.408,   0.744) 

 

211.674 
(8.839)  

1.613   
(1.933)  

0.762 

OI 0.784 
(0.557,   1.170) 

 

152.793 
(2.225) 

---------- 0.020 

TI 0.853 
(0.687,   1.131) 

 

959.258  
(7.137) 

---------- 0.485 

 



 
Table 8: First 12 impulse responses 

 SUA SUNS OR IPSUNS IFA IFRBS OI TI 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1 0.775 0.668 0.666 0.792 0.796 0.555 0.784 0.853 

2 0.687 0.557 0.554 0.709 0.714 0.431 0.699 0.790 

3 0.636 0.495 0.493 0.660 0.666 0.367 0.648 0.751 

4 0.600 0.454 0451 0.626 0.632 0.326 0.613 0.723 

5 0.573 0.424 0.421 0.600 0.606 0.297 0.587 0.702 

6 0.552 0.400 0.398 0.579 0.585 0.275 0.566 0.685 

7 0.534 0.381 0.379 0.562 0.568 0.257 0.548 0.671 

8 0.519 0.365 0.363 0.547 0.554 0.243 0.533 0.658 

9  0.506 0.352 0.349 0.534 0.541 0.231 0.521 0.647 

10 0.494 0.340 0.338 0.523 0.530 0.222 0.509 0.638 

11 0.484 0.330 0.327 0.513 0.520 0.212 0.499 0.629 
 In bold the responses which are above 0.500. 

 
 
 
 
Table 9: First 10 seasonal impulse responses 

 SUA SUNS OR IPSUNS IFA IFRBS OI TI 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

12 0.322 1.113 1.137 1.067 1.247 0.966 0.510 1.107 

24 0.359 1.138 1.186 1.039 1.362 0.887 0.434 1.100 

36 0.318 1.125 1.193 0.988 1.412 0.802 0.397 1.065 

48 0.301 1.095 1.179 0.937 1.425 0.722 0.372 1.026 

60 0.286 1.057 1.153 0.890 1.418 0.651 0.356 0.990 

72 0.275 1.016 1.121 0.851 1.399 0.589 0.342 0.960 

84 0.266 0.974 1.086 0.818 1.375 0.535 0.331 0.935 

96 0.259 0.934 1.050 0.790 1.347 0.490 0.321 0.914 

108 0.252 0.895 1.014 0.766 1.319 0.451 0.313 0.895 

120 0.246 0.860 0.979 0.746 1.291 0.417 0.306 0.880 
  In bold the responses which are above 1.000. 

 
 



 
Figure 1: Time series plots 
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Figure 2: Sample autocorrelation functions 
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