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Significant but more moderate increases occur in the Atlantic, Northeast Pacific, and Southern
Hemisphere, while the Antarctic exhibits a slight upward trend. Models that allow heavy tails
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and diagnostics. The findings indicate that climate shocks now propagate more durably than
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1 Introduction

Climate time series, such as long-run records of global and regional temperature anomalies,
exhibit complex persistence patterns that standard short-memory or unit-root models often
fail to capture adequately. Fractionally integrated FI(d) processes (Granger and Joyeux, 1980;
Hosking, 1981), which allow the differencing parameter d to take non-integer values, provide
a flexible continuum between short-memory I(0) and unit-root I(1) processes (e.g. Hamilton,
1994). Most applications in the climate and environmental literature assume a time-invariant
memory parameter d (e.g. Yuan et al., 2014; Barassi et al., 2018; del Barrio Castro et al., 2025)
and do not identify significant changes in persistence due to evolving climatic influences,
alterations in observational networks, or structural breaks in climate dynamics.

Empirical evidence suggests that persistence in climate and environmental series d is
dynamic. For example, wavelet-based methods (Lu and Guegan, 2011; Lu and Tao, 2012;
Boubaker et al., 2017) and score-driven models (Bisaglia and Grigoletto, 2021) have been used
to detect time-varying long-range dependence. We extend the latter work in our paper.

The class of score-driven models is a broadly applicable, likelihood-based framework
for time-varying parameters such as location, scale, and shape of conditional distributions
(Harvey and Chakravarty, 2008; Creal et al., 2008). Score-driven updates employ the scaled
score of the conditional likelihood to generate data-adaptive parameter dynamics, which
often yield robust filtering performance (Blasques et al., 2015; Gorgi et al., 2024).

We introduce the score-driven FI model for the ¢ distribution, in which the degree of
fractional integration d; evolves endogenously alongside the conditional location and, in
extended specifications, the conditional log scale. We propose the t-FI(d;)-QAR family (FI
quasi-autoregressive model), in which Student’s ¢ errors accommodate heavy tails commonly
observed in climate anomaly records, and the dynamic memory parameter d; is updated
through a score-driven recursion. To address conditional heteroscedasticity and persistent
scale effects, we consider two heteroscedastic variants: a t-FI-QAR-Beta-t-EGARCH model

that imposes 1(0) dynamics on the conditional log-scale and a t-FI-QAR-Beta-t-EIGARCH
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counterpart that allows I(1) dynamics for the conditional log-scale. The model allows (i)
dynamic long-memory behavior, (ii) resilience to outliers via heavy-tailed errors, and (iii)
efficient, information-driven updates that adapt to changes in the data-generating process.

We use monthly data on the Arctic, Antarctic, Atlantic Ocean, Northeast Pacific Ocean,
Northern Hemisphere, and Southern Hemisphere temperature anomalies from January 1850
to October 2025. The t-FI-QAR specification captures dynamics and annual stochastic seasonal
effects in the conditional mean of temperature anomaly variables. The Beta---EGARCH and
Beta-t-EIGARCH filters capture dynamics in the conditional variance of the errors.

We observe an increase in d; throughout the sample period across all regions. The most
pronounced increase is seen in the Arctic and the Northern Hemisphere. Significant increases
in d; are also noted for the Atlantic Ocean, the Northeast Pacific Ocean, and the Southern
Hemisphere. A slight increment in d; is estimated for the Antarctic. These findings suggest
that climate shocks are expected to have longer-lasting impacts, and it is crucial to implement
stronger policy measures to restore the original trends and mitigate anthropogenic effects.

In the remainder of this paper, Section 2 reviews the literature, Section 3 presents the meth-

ods, Section 4 describes the data, Section 5 summarizes the results, and Section 6 concludes.
2 Literature review

Fractional integration models appeared in the early 1980s (Granger, 1980, 1981; Granger and
Joyeux, 1980; Hosking, 1981), and they became popular in the late 1990s (Baillie, 1996; Gil-
Alana and Robinson, 1997). Gil-Alana and Robinson (1997) examined 14 US macroeconomic
variables, which were earlier studied by Nelson and Plosser (1982) in the context of I(1)
processes. They found that the 14 variables could be described better by FI(d) models.
Subsequently, FI(d) models were applied in finance (Abbritti et al., 2016, 2023), climatology
(Yuan et al., 2014; Proietti and Maddanu, 2022; Huang et al., 2024; del Barrio Castro et al,,
2025), and environmental studies (Barassi et al., 2018; Blazsek et al., 2025b).

Dynamic FI(d) models relevant to the present paper have been investigated in several



papers, most of them using recursive or sequential estimation of the differencing parameter.
For example, Caporale et al. (2020) recursively estimated the order of integration in the
UK inflation rate. Cepni et al. (2025) proposed a time-varying estimation of the memory
parameter in carbon price uncertainty. Wang and Ni (2025) proposed a recursive algorithm
to estimate the Hurst exponent and the differencing parameter in ARFIMA (autoregressive
fractionally integrated moving average) models by repeatedly applying an autoregressive
tilter until convergence is achieved. Another related paper is by Caporale et al. (2024), where
they developed a dynamic factor model incorporating a fractional integration structure.
Moreover, broader time-varying long memory models based on wavelets (Lu and Guegan,
2011; Luand Tao, 2012; Boubaker et al., 2017) and score-driven models of fractional integration
(Bisaglia and Grigoletto, 2021) were also suggested. We present an alternative to the latter
work by extending it at several points.

Score-driven models, known as dynamic conditional score (DCS) or generalized autore-
gressive score (GAS) models, were introduced by Harvey and Chakravarty (2008) and Creal
et al. (2008). See also Creal et al. (2011, 2013) and Harvey (2013). Some interesting properties
of score-driven models are that (i) their updating terms generalize those of classical dynamic
time series models (Creal et al., 2013; Harvey, 2013), (ii) they use information-theoretically
effective filters (Blasques et al., 2015; Gorgi et al., 2024), and (iii) their outlier robustness is
superior to that of classical time series models (Harvey, 2013; Caivano and Harvey, 2014).
Applications of score-driven models used score-driven filters to model different properties of
the probability distribution of the dependent variables, such as the conditional mean (Harvey,
2013), volatility (Harvey and Lange, 2017), association (Creal et al., 2013), shape parameters
(Catania, 2021; Ayala et al., 2023), and regime-switching dynamics (Bernardi and Catania,
2019; Catania, 2021; Harvey and Palumbo, 2023), among several other applications.

To the best of our knowledge, relatively few works employ FI score-driven models. Janus
et al. (2014) introduced FI score-driven filters of volatilities and copulas in a simultaneous

equations model to capture the scale and dependence dynamics of several Dow Jones equi-



ties. Opschoor and Lucas (2019) introduced an FI score-driven multivariate model to model
covariance matrix dynamics for intraday stock return data. Two recent papers employed FI
univariate (Blazsek et al., 2025b) and multivariate (Blazsek et al., 2025a) score-driven location
models. These four papers assume that the degree of fractional integration is time-invariant.
For the present paper, a relevant work from the literature is by Bisaglia and Grigoletto (2021).
They introduced a score-driven filter for the degree of fractional integration parameter and

assumed a normal distribution with constant conditional variance for the error term.
3 Methods

The score-driven degree of the fractional integration model is

Ve = U +0p = py + exp(Ay)e; (1)

fort =1,...,T, where u; = E(y;|F;-1, ©) is the score-driven conditional mean of the demeaned
dependent variable y; € Rwith E(y;) = 0, where ;-1 = o(y1, . .., ¥1-1) and @ is a vector of time-
invariant parameters. The scaled error term v;|(F;-1,®) ~ [0, exp(A;), v] has a conditional ¢
distribution, where the degrees of freedom parameter v € ® with 2 < v < oo and A; is the
score-driven conditional log scale parameter. The standardized error term €; ~ £(0,1,v) has

the Student’s t distribution. The conditional standard deviation (SD) of y; is

01 = SD(WIFi-1,0) = | = exp(A). 2)

The log of the conditional density function of y; is

3 v+1 vy 1 v+1 (v — )
In f(ylFis,©) = 1nr( : ) 1nr(2) > In(m) = 4, = 2= In |1 frepil] @
First, the score-driven conditional mean y; is a t-FI(d;)-QAR(p) filter:
(1-Ly*Q -l —...- PpLP s = Y1y, (4)
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where d; € (0,1) is the score-driven degree of fractional integration parameter, L is the lag

operator, and (¢, ..., ¢,, 1)’ € ©. The scaled conditional score function u,,; is

dlnf(ylFi-1;0) v+1 Lo vFl vexp(A)e;
Ipts “vexp(A) T vexp(2A) v+ €2

(5)

where u,,; is defined by the second equality (Harvey, 2013). The scaled conditional score 1,
is a martingale difference sequence (MDS) (Harvey, 2013), and it is a bounded function of
€; because u,,; is a continuously differentiable function of ¢; and if |e;] — oo then u,; —, 0.
Due to the boundedness property, all unconditional moments of u,, exist. The u,; —, 0
property shows that u,; performs an asymptotic trimming of shocks captured by ¢;. Hence,
the t-FI(d;)-QAR(p) filter is robust to outliers. We note that if v — oo, ie., & —; N(0,1),
then u,; —, exp(A;)e; = v;. This shows that the normal distribution is a special case of
the conditional mean filter, for which the updating term is a linear transformation of €; as
in the moving average (MA) term of the Gaussian-ARMA(p,1) filter. We also note that the
t-FI(d;)-QAR(p) filter can be extended to the t-FI(d;)-QARMA(p,q) filter straightforwardly.
Using the Maclaurin series (e.g., Hassler and Kokoszka, 2010), y; can also be written as

- I'(j+d)
Pt = Qg1 + .o+ Gppipp + Z m¢1uy,t—1—jz (6)
=0

where I'(x) is the gamma function. We set all variables for t < 0 to O to initialize this filter,
similar to Bisaglia and Grigoletto (2021). Therefore, the infinite sum in Eq. (6) converges. The
t-FI(d;)-QAR(p) specification can capture stochastic seasonality in y; by selecting the lag orders
of u; according to the period of the seasonality. We note that to capture annual stochastic
seasonality in the monthly time series data of our application, we use a lag order of 12.

Second, the score-driven degree of fractional integration d; uses the link function

exp(d;)

T el ?



which ensures that d; € (0,1), where

Jt = )/Jt—l + (1 =Yg, (8)

which is a score-driven exponentially weighted moving average (EWMA) filter, where y €
(0,1) is a smoothing parameter that can be estimated (i.e., ¥ € ®) or chosen ex-ante. In our
application, we choose y = 0.98 a priori to simplify the estimation procedure. We considered
alternatives for y € (0.9, 1), where different values of y imply different levels of smoothing for
d;. The results were similar and are available from the authors upon request. We initialize d,
from E(d;) = 0. Hence, we initialize d; from 0.5.

The conditional score function u,; is

Ugt

_dInf(ylFi-1;0)  (v+ D T+ d)[WOG + dy) — WOd,)] |
- ad, —exp(A)(v + €?) X{Z T(j+ DI(d;) l,bmy,t—l—]} , 9)

j=0

where WO(x) is the digamma function, also known as the polygamma function of order 0.
The conditional score 14, is an MDS (Harvey, 2013, Chapter 2), and it is a bounded function
of €; because u,, is a continuously differentiable function of ¢; and if |e;] — oo then 1, —, 0.
Due to the boundedness property, all unconditional moments of u,; exist. The uz; —, 0
property shows that u,,; performs an asymptotic trimming of shocks captured by €;. Hence,
the conditional degree of the fractional integration filter is robust to outliers. We note that if

v = oo, 1e., € —4 N(0, 1), then conditional score function u,, is given by:

Ud,t —

& {i T(j + d)[WO(j + dy) — WOd))]

"exp(h) " | & T(j+ 1)T(d) 1 eXP(At—l—f)et—l—f} : (10)

This shows that by assuming the normal distribution for €;, we get a special case of the
conditional degree of fractional integration model, for which the updating term is a linear
function of €, similar to the Gaussian-ARFIMA(p,d,1) filters, where d denotes the degree of

fractional integration (see Gil-Alana and Hualde, 2009).
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Third, for the log scale A, we use (i) the Beta-t-EGARCH model (Harvey, 2013):
A=+ BAi1 +auy g, (11)

where (v, ,a) €0, || <1,and A; = w/(1 — ), and (ii) the Beta-t-EIGARCH model:
Av= Ao +auy (12)

(Harvey, 2013, p. 113), where a € © and we estimate the initial value by parameter A; € ©.

For both log scale filters, the conditional score function u, ; is

I f(yIFii®) (v +1)E
oA, v+ €?

~1. (13)

The scaled score u,; is an MDS (Harvey, 2013), and it is a bounded function of €; because
u,, is a continuously differentiable function of €; and if |e;] — oo then u,; —, v. Due to the
boundedness property, all unconditional moments of u,; exist. The 1, —, v property shows
that u, ; performs an asymptotic Winsorizing of shocks captured by €;. Hence, the log scale
filter is robust to outliers. If v — oo, i.e., €, —4 N(0,1), then u, ; —, ef — 1. This shows that the
normal distribution is a special case of the conditional mean model, for which the updating
term is a quadratic transformation of €;, as in the Gaussian-GARCH(p,1) filters. Moreover,
we note that u,; is i.i.d. since u,; is a continuous function of €; (White, 1984).

As a special case of the score-driven degree of fractional integration models in this
section, we consider A; = A € © (i.e., homoscedastic errors), denoted as t-FI(d;)-QAR(p).
For this specification, ® = (¢1, P12, ¢P1,A,v)’. The score-driven degree of fractional inte-
gration models for the two conditional scale specifications are denoted as t-FI-QAR-Beta-
t-EGARCH and t-FI-QAR-Beta-t-EIGARCH, respectively. For t-FI-QAR-Beta-t--EGARCH,
O = (P1, P12, Y1, w, B, a,v)'. For t-FI-QAR-Beta-t-EIGARCH, © = (¢1, P12, Y1, @, A1, v)'.

We estimate all models using the maximum likelihood (ML) estimator method. See the



relevant works of Sowell (1992), Harvey (2013), and Blasques et al. (2022). We compare
statistical performances using the log-likelihood (LL), Akaike information criterion (AIC),
Bayesian information criterion (BIC), and Hannan-Quinn criterion (HQC) (Harvey, 2013).
We perform model diagnostics for €;, 1, us;, and u,; using the tests by Ljung and Box
(1978) and Escanciano and Lobato (2009). The null hypothesis of the Ljung-Box (LB) test is
that the time series consists of independent random variables, and the null hypothesis of the
Escanciano-Lobato (EL) test is that the time series is an MDS. We use lag orders of 1, 5, 10, 25,

and 50 for the LB test. The EL test involves an automatic lag-order selection.
4 Data

The data used correspond to average temperature anomalies in the Arctic, Antarctic, Mid-
Atlantic, Northeast Pacific, and northern and southern hemispheres, obtained from the U.S.
National Oceanic and Atmospheric Administration (NOAA) series, https://www.ncei.noaa.
gov/access/monitoring/climate-at-a-glance/global/time-series. These series integrate sea sur-
face and land surface temperature records from various long-term observation sets. The
information used has a monthly resolution and covers the period from January 1850 to Octo-
ber 2025, corresponding to combined global land and ocean temperature anomalies calculated
relative to the climatological average for the period 1901-2000.

Table 1 displays descriptive statistics of the temperature anomaly data. Figures 1 and
2 present their evolution from 1850 to 2025. We demeaned all variables by subtracting the
sample average from each, which provides y; (i.e., E(y;) = 0) in the econometric model.

We provide estimates for the degree of fractional integration d using the following semi-
parametric estimators: (i) the local Whittle (LW) estimator (Robinson, 1995); (ii) the exact LW
(ELW) estimator, where the initial value of y; is its sample average (Shimotsu and Phillips,
2005). (iii) the ELW estimator, where the initial value of y; is y; (Shimotsu and Phillips, 2005).
(iv) the two-step ELW estimator with unknown mean and time trend (Shimotsu, 2010), which

uses the tapered estimator by Velasco (1999) in the first step and a modified ELW estimator
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in the second step that uses the weighted average of the sample average of y; and y; to
approximate the initial value. (v) the two-step ELW estimator with unknown mean and time
trend (Shimotsu, 2010), which uses the tapered estimator by Hurvich and Chen (2000) in the
tirst step and a modified ELW estimator in the second step that uses the weighted average of
the sample average of y; and y; to approximate the initial value.

For estimators (i)-(v), an input argument is the bandwidth parameter, denoted 6. A low
bandwidth leads to higher variance but lower bias in d. A high bandwidth leads to lower
variance but higher bias in d. Alternative bandwidth parameters are suggested by Geweke
and Porter-Hudak (1983); Robinson (1995); Delgado and Robinson (1996); Shimotsu and
Phillips (2005); Henry (2007); Shimotsu (2010); Qu (2011); Baillie et al. (2014). Motivated by
these, we consider 6 € {0.5,0.55,0.6,0.65,0.7,0.75, 0.8}.

We report results for all semiparametric estimators and bandwidths in Table 2. All es-
timates indicate long memory for all dependent variables with 0 < d < 1. Moreover, d
significantly differs across alternative estimation methods and bandwidths and is a single
estimate for each time series representing the average degree of fractional integration. Our
score-driven model employs a flexible and robust approach for estimating the evolution of
the degree of fractional integration. It controls for seasonality, heteroscedasticity, employs
information-theoretically efficient filters for the conditional mean, log scale, and degree of
fractional integration, and is robust to outliers. This provides an alternative method to the

above LW method-based semiparametric estimators.

[APPROXIMATE LOCATION OF TABLES 1-2 AND FIGURES 1-2]
5 Results

We present the parameter estimates and model diagnostics for the t-FI-QAR, ¢t-FI-QAR-Beta-
t-EGARCH, and t-FI-QAR-Beta-t-EIGARCH specifications in Tables 3 and 4. We estimate
t-FI-QAR for all dependent variables. For all specifications, we use lags 1 and 12 for the

FI-QAR equation to simplify the estimation, but this can be updated in future work. In
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this way, we control for both first-order dynamics and annual seasonality. For the t-FI-QAR
specifications, the error term is homoscedastic. We improve that by using Beta-t--EGARCH
or Beta-t-EIGARCH conditional standard deviation dynamics. In the first step, we estimated
t-FI-QAR-Beta-t-EGARCH for all variables. In the results reported in Tables 3 and 4, we
estimate the Beta-t-EIGARCH volatility model for those cases when § of the Beta-t--EGARCH
filter converged to 1 (i.e., we found I(1) volatility dynamics). Results for t-FI-QAR-Beta-t-
EIGARCH are reported for the Antarctic and Southern Hemisphere temperature anomaly
variables, and results for t-FI-QAR-Beta-t-EGARCH are reported for Arctic, Atlantic Ocean,
Northeast Pacific Ocean, and Northern Hemisphere temperature anomalies.

The parameter estimates indicate significant mean dynamics (¢, ¢12, and ;). Parameter
¢ is significant for all cases but for the Antarctic, ¢, is significant for all cases, and
is also significant for all cases (Tables 3 and 4). We find significant log scale dynamics for
all cases. The degrees of freedom v estimates indicate heavy tails. The highest degrees of
freedom parameter v is estimated for the t-FI-QAR-Beta-t-EGARCH model for the Atlantic
Ocean (7 = 31.8161). We also report LL, AIC, BIC, and HQC for each model in Tables 3 and 4.
All those metrics indicate that the t-FI-QAR-Beta-t-EGARCH or t-FI-QAR-Beta-t-EIGARCH
model outperforms the t-FI-QAR for the temperature anomaly data.

Tables 3 and 4 also present the p-values for the Ljung-Box and Escanciano-Lobato tests
(Ljung and Box, 1978; Escanciano and Lobato, 2009) using lag orders 1, 5, 10, 25, and 50
for the Ljung—Box test and the optimal lag order for the Escanciano-Lobato test (Escanciano
and Lobato, 2009). The p-values indicate correct specification for several filters, though the
specification of 1y may be updated by adding further lags to the score-driven equations. We
use only lags ;-1 and -1, to simplify the statistical estimation procedures.

In Figures 3 and 4, we present the score-driven degree of factional integration parameter
d; for the best performing t-FI-QAR-Beta-t--EGARCH or t-FI-QAR-Beta-t-EIGARCH specifi-
cation for each dependent variable. We note that as we initialize from d; = 0.5, for most

variables, a burn-in period of 10-20 observations (i.e., the first 10-20 years of the sample
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period) is needed to approximate the true value of d;. The estimation results indicate a sig-
nificant increase in d, in the last three decades for the Arctic and the Northern Hemisphere,
when the variable y; became non-stationary. We find a significant increase in d; for the At-
lantic, Northeast Pacific Ocean, and the Southern Hemisphere. We also evidence a slightly
increasing degree of fractional integration for the Antarctic. These results indicate that there
are different levels and tendencies, but the degree of fractional integration for the temperature
anomalies is increasing in every region. This suggests that temperature shocks are expected
tolast longer, their duration has increased over the last 30 years, and stronger policy measures
are needed to recover to the original trend and stabilize temperature dynamics.

We present (i) the impact of ¢; to the scaled score function of location u,,; in Figures 5 and
6, (ii) the impact of €; to the score function of the degree of fractional integration u,, in Figures
7 and 8, and (iii) the impact of €; to the score function of log scale u, ; in Figures 9 and 10. As
the maximum degrees of freedom is ¥ = 31.8161, all impact functions are bounded functions
of €;. Hence, all score-driven filters in this paper are robust to outliers.

To highlight the importance of the heteroscedasticity-robust inference for the t-FI-QAR
model, we exhibit the conditional standard deviation o; for temperature anomaly variables
across all geographic regions from January 1850 to October 2025. This analysis utilizes the
t-FI1(d;)-QAR(p)-Beta-t--EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models, as illustrated
in Figures 11 and 12. The estimates reveal significant and region-specific volatility dynamics.

In Supplementary Material A, we present the impact functions for u,; and u,,, and the
evolution of y, dy, €, vy, Uy, and gy from January 1850 to October 2025 for ¢t-FI-QAR for all
variables. In Supplementary Material B, we present the impact functions for u,, 14, and u,
and the evolution of y;, di, Ay, 01, €, v, Uy, Uayr, Uy from January 1850 to October 2025 for

t-FI-QAR-Beta-t-EGARCH or t-FI-QAR-Beta-t-EIGARCH for all variables.

[APPROXIMATE LOCATION OF TABLES 3-4 AND FIGURES 3-12]
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6 Conclusions

This paper has introduced the t-FI(d;)-QAR model, and two heteroscedastic extensions (t-FI-
QAR-Beta-t-EGARCH and t-FI-QAR-Beta-t-EIGARCH) that allow the conditional log-scale
to follow either I(0) or I(1) dynamics. Our methodology brings together three features that
are especially relevant for long climate time series: (i) a time-varying fractional memory
parameter d; that is updated by the scaled score of the conditional likelihood, (ii) Student’s ¢
conditional errors to accommodate heavy tails and to increase robustness to extreme anoma-
lies, and (iii) score-driven updates for the conditional mean, memory parameter, and, where
applicable, the conditional log-scale, which deliver information-efficient and robust filtering.

Using combined land-and-ocean temperature anomaly series from NOAA for six regions
(Arctic, Antarctic, Atlantic Ocean, Northeast Pacific Ocean, Northern Hemisphere, and South-
ern Hemisphere) from January 1850 to October 2025, we find the following primary results:

(i) Increasing persistence: For all regions, d; has risen over the sample, indicating that
temperature shocks have become more persistent. The increase is strongest and most pro-
nounced in the Arctic and the Northern Hemisphere, where the series displays evidence of a
structural shift affecting the last three decades toward non-stationary dynamics.

(ii) Regional heterogeneity: Significant increases in d; are also estimated for the Atlantic
Ocean, the Northeast Pacific Ocean, and the Southern Hemisphere, while the Antarctic shows
smaller increases. Thus, the evolution of persistence is spatially heterogeneous.

(iii) Importance of heavy tails and heteroscedasticity: Models that jointly account for
heavy-tailed errors (Student’s t) and time-varying conditional scale (Beta---EGARCH or
Beta-t-EIGARCH) outperform the homoscedastic t-FI-QAR in likelihood-based criteria and
generally produce better diagnostic behavior for the score-driven updating series.

(iv) Robust updating and bounded impact functions: The score-driven updating terms
for the conditional mean, memory parameter, and log-scale based on the t distribution are
bounded functions of the standardized innovations; this produces automatic trimming of

extreme shocks and lends robustness to outliers.
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(v) Policy and scientific implications: The increase in the memory parameter implies that
climate shocks, whether driven by natural variability or anthropogenic forcing, are likely to
persist for longer durations than in earlier parts of the instrumental record. For policymakers,
this means that transient mitigation or adaptation responses may be insufficient to return
systems to prior states in the short run; stronger, sustained policy measures will be needed
to counteract long-lived deviations. For climate scientists, the results underscore the value of
allowing persistence to vary over time when characterizing and projecting climate dynamics.

While the proposed score-driven framework is flexible and robust, several important
limitations should be considered. First, our models are observation-driven and apply a
univariate approach to each regional series, meaning they do not explicitly account for cross-
series dependence or common underlying drivers. Second, although the ¢ distribution and
the chosen score-driven specifications effectively capture heavy tails and heteroscedasticity,
they cannot replace more comprehensive structural climate models that explain physical
mechanisms in detail. Third, the choice of y = 0.98 for the EWMA-type d; recursion, along
with the specific parametric forms used for the conditional location and log scale, is a practical
decision; however, alternative filtering methods could also be investigated. Finally, formal
proofs regarding the asymptotic properties of the maximum likelihood estimator, such as
stationarity and invertibility, are areas that warrant further study.

The present paper could be extended in several ways, including: (i) Developing multi-
variate models that examine the joint evolution of d; across different regions, which would
help clarify both shared and local persistence dynamics. (ii) Incorporating exogenous factors,
such as greenhouse gas concentrations, aerosol forcings, or volcanic events, into the score
updates could aid in identifying the drivers behind changes in persistence. (iii) Extending
the FI analysis to models that use Gegenbauer polynomials (see Gil-Alana and Hualde, 2009)
could be beneficial, especially since singularities in these models occur at frequencies other
than zero. (iv) Conducting comparative studies of the t-FI-QAR model against alternative

time-varying long-memory estimators, like wavelet-based approaches, would provide valu-

14



able insights. (v) Finally, applying this framework to other environmental datasets would

help assess the practical utility of the -FI-QAR model for decision-making.
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Table 1. Descriptive statistics.

Variable Sample size Minimum Maximum Median Mean SD
Arctic 2110 -3.7100 5.1300 0.1003  —0.0400 1.1870
Antarctic 2110 -1.6300 2.2200 0.0440 0.0300 0.4335
Atlantic Ocean 2110 -1.0900 1.8400 0.0991 0.0700 0.4592
Northeast Pacific Ocean 2110 -1.8800 1.7900 0.0532 0.0500 0.4809
Northern Hemisphere 2110 -1.0500 2.0200 0.0786 -0.0200 0.4887
Southern Hemisphere 2110 -0.5400 1.1000 0.0562 -0.0400 0.3047
Variable Skewness Kurtosis Q5% Q95% IQrange SW test
Arctic 0.5976 1.2057 -1.6545 2.3245 1.2700 0.0000
Antarctic 0.2634 1.7174 -0.6500 0.7900 0.4600 0.0000
Atlantic Ocean 0.4186 0.4098 -0.6100 0.8700 0.5925 0.0000
Northeast Pacific Ocean -0.0402 0.5922 -0.7245 0.8600 0.6000 0.0000
Northern Hemisphere 1.1241 1.2380 -0.5300 1.1245 0.5100 0.0000
Southern Hemisphere 0.7873 -0.0735 -0.3300 0.6500 0.4300 0.0000

Notes: Standard deviation (SD); quantile 5% (Q 5%); quantile 95% (Q 95%); interquartile (IQ); Shapiro-Wilk (SW). We present the p-values
for the SW test. Data source: U.S. National Oceanic and Atmospheric Administration (NOAA).
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Table 2. Semiparametric estimates of the degree of fractional integration d.

LW estimator (Robinson, 1995):

Variable/Bandwidth 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Arctic 0.6002 0.5651 0.5316 0.5009 0.3811 0.3883 0.3698
Antarctic 0.3173  0.2656  0.2365 0.2233 0.1763  0.1835 0.1658
Atlantic Ocean 0.4420 0.4324 04971 0.5349 05821 0.6354 0.6823
Northeast Pacific Ocean  0.3132  0.3428 0.4058 0.4396 0.4789 0.5199 0.5799
Northern Hemisphere 0.6504 0.6703 0.7125 0.7411 0.6152  0.6291  0.6089
Southern Hemisphere 0.6511 0.6144 0.6647 0.6794 0.6390 0.6485 0.6352
ELW estimator (Shimotsu and Phillips, 2005), initial value of y; is its sample average:
Variable/Bandwidth 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Arctic 0.6525 0.5875 0.5338 0.4831 0.3654 0.3743 0.3654
Antarctic 0.3401 02921 0.2483 0.2276 0.1876 0.1956  0.1839
Atlantic Ocean 0.5304 04704 05071 05284 0.5782 0.6462 0.7155
Northeast Pacific Ocean  0.3795 0.3770 0.4159 04450 0.4840 0.5319 0.6092
Northern Hemisphere 0.7194 0.6801 0.6766 0.6771 0.5619 0.5792 0.5713
Southern Hemisphere 0.6994 0.6152 0.6324 0.6297 0.5988 0.6157 0.6167
ELW estimator (Shimotsu and Phillips, 2005), initial value of y; is y1:

Variable/Bandwidth 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Arctic 0.5998 05498 0.5038 0.4541 0.3387 0.3514 0.3460
Antarctic 0.3225 0.2818 0.2409 0.2206 0.1845 0.1931 0.1820
Atlantic Ocean 0.5243 0.4638 0.5006 0.5233 0.5759 0.6476  0.7162
Northeast Pacific Ocean  0.3460 0.3506 0.3910 0.4325 0.4801 0.5334 0.6120
Northern Hemisphere 0.7063 0.6598 0.6512 0.6531 0.5339 0.5593  0.5555
Southern Hemisphere 0.6772 0.5947 0.6119 0.6115 0.5863 0.6071  0.6095
Two-step ELW estimator (Shimotsu, 2010; Velasco, 1999):

Variable/Bandwidth 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Arctic 0.6111 05947 05669 0.4587 0.3427 0.3539  0.3482
Antarctic 0.3323 0.2822 0.2410 0.2210 0.1865 0.1946 0.1836
Atlantic Ocean 0.5368 0.4686 0.5081 0.5276 0.5736 0.6420 0.7154
Northeast Pacific Ocean ~ 0.3552  0.3602  0.4099 04378 0.4838 0.5355 0.6137
Northern Hemisphere 0.6484 0.6419 0.6348 0.6314 0.5784 0.5929 0.5870
Southern Hemisphere 0.6790 0.6221 0.6271 0.6229 0.6036 0.6176  0.6205
Two-step ELW estimator (Shimotsu, 2010; Hurvich and Chen, 2000):

Variable/Bandwidth 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Arctic 09319 0.8751 0.7883 0.6071 0.5001 0.5001 0.5001
Antarctic 09339 09267 0.7205 0.6610 0.5465 0.5438 0.5004
Atlantic Ocean 0.5368 0.4686 0.5081 0.5276 0.5736 0.7306  0.9394
Northeast Pacific Ocean  0.3552  0.3602  0.4099 0.4379 04838 0.7387 0.7605
Northern Hemisphere 0.6484 0.6419 0.6348 0.6314 05784 0.5929 0.5870
Southern Hemisphere 0.6790 0.6221 0.6270 0.6229 0.6036 0.6176  0.6205

Notes: Local Whittle (LW); exact LW (ELW).
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Table 3. Parameter estimates and model diagnostics.

Arctic Antarctic Atlantic Ocean
Arctic t-FI-QAR Antarctic t-FI-QAR Atlantic Ocean t-FI-QAR
Statistics t-FI-QAR  -Beta-t-EGARCH t-FI-QAR  -Beta-t-EIGARCH t-FI-QAR  -Beta-t-EGARCH
01 0.0919**(0.0350) 0.0498"*(0.0425) 0.0077(0.0889) 0.0002(0.0462) 0.5194**(0.0135) 0.5806"*(0.0169)
P12 0.4044"(0.0374) 0.3957**(0.0418) 0.2832**(0.0816) 0.5498"*(0.0473) 0.0876"*(0.0147) 0.0919**(0.0166)
U1 0.4762*(0.0353) 0.4269**(0.0339) 0.3112**(0.0353) 0.2194**(0.0230) 0.2194*(0.0287) 1.0012(0.0312)
A —-0.4622"(0.0231) —1.1749**(0.0265) —1.8641**(0.0156)
@ —0.3172**(0.0476) —0.0373"(0.0101)
B 0.3581**(0.0887) 0.9801**(0.0054)
a 0.1643"*(0.0206) 0.0134**(0.0031) 0.0242*(0.0038)
A —2.7346"(0.1031)
v 4.7799*(0.5144) 4.6576"*(0.4890) 4.2555"*(0.4852) 9.7832**(1.8999)  12.6019**(0.8475)  31.8161*(7.7460)
LL -1.1723 -1.1523 —0.4894 -0.3718 0.3811 0.4193
AIC 2.3493 2.3111 0.9835 0.7492 —-0.7575 —0.8320
BIC 2.3627 2.3299 0.9969 0.7653 -0.7441 —0.8133
HQC 2.3542 2.3180 0.9884 0.7551 -0.7526 —-0.8252
LB(1) & 0.0161 0.0019 0.0048 0.0115 0.5053 0.7333
LB(5) e; 0.1029 0.0071 0.0328 0.0722 0.0000 0.0000
LB(10) ¢¢ 0.0551 0.0026 0.1082 0.1870 0.0000 0.0000
LB(25) €; 0.0000 0.0000 0.0215 0.0000 0.0000 0.0001
LB(50) ¢; 0.0000 0.0000 0.0257 0.0000 0.0000 0.0056
LB(1) uy,t 0.2720 0.0032 0.9204 0.2347 0.7549 0.2350
LB(5) uy,s 0.7964 0.0619 0.8092 0.1870 0.0000 0.0000
LB(10) ¢ 0.7646 0.0000 0.7404 0.1783 0.0001 0.0000
LB(25) uy,e 0.0000 0.0000 0.0156 0.0023 0.0008 0.0000
LB(50) 1yt 0.0000 0.0000 0.0024 0.0015 0.0050 0.0000
LB(1) ug, 0.0000 0.0000 0.2174 0.7813 0.0000 0.0000
LB(5) ug, 0.0000 0.0000 0.3144 0.4431 0.0000 0.0000
LB(10) ug, 0.0000 0.0000 0.0091 0.3865 0.0000 0.0000
LB(25) ug, 0.0000 0.0000 0.0001 0.0008 0.0000 0.0000
LB(50) ug 0.0000 0.0000 0.0011 0.0249 0.0000 0.0000
LB(1) u) 0.3813 0.0003 0.2747
LB(5) ua 0.0000 0.0000 0.2488
LB(10) u ¢ 0.0000 0.0000 0.4992
LB(25) uy 0.0000 0.0000 0.5059
LB(50) uy ¢ 0.0000 0.0000 0.5663
EL ¢ 0.0422 0.0001 0.0268 0.0052 0.0000 0.0000
EL uy 0.3086 0.0023 0.9266 0.3351 0.0000 0.0000
EL ug, 0.0001 0.0000 0.5199 0.8615 0.0000 0.0000
EL u) 0.0000 0.0000 0.0946

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan-Quinn criterion (HQC);
Ljung-Box (LB); Escanciano-Lobato (EL). Bold numbers indicate either superior likelihood-based metrics or p-values greater than 5%. **
indicates significance at the 1% level.
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Table 4. Parameter estimates and model diagnostics.

Northeast Northern Southern
Northeast Pacific Ocean Northern Hemisphere Southern Hemisphere
Pacific Ocean t-FI-QAR Hemisphere t-FI-QAR Hemisphere t-FI-QAR
Statistics t-FI-QAR  -Beta-t-EGARCH t-FI-QAR  -Beta-t--EGARCH t-FI-QAR  -Beta-+-EIGARCH
P1 0.4027*(0.0196) 0.4297**(0.0230) 0.4049(0.0171) 0.4275*(0.0176) 0.5598*(0.0178) 0.5658"(0.0194)
d12 0.0701*(0.0214) 0.0509***(0.0223) 0.3403(0.0201) 0.2950(0.0220) 0.2148*(0.0182) 0.1995"*(0.0182)
Un 0.9506™*(0.0314) 0.8802**(0.0319) 0.5813"(0.0317) 0.5481"(0.0304) 0.6174*(0.0291) 0.5929**(0.0293)
A —1.4842"(0.0145) —1.8872(0.0188) —2.3939"(0.0182)
3] —0.0558"%(0.0162) —1.3434*(0.2597)
B 0.9630"*(0.0108) 0.2891(0.1377)
a 0.0271**(0.0039) 0.0824+(0.0139) 0.0078"*(0.0021)
A —2.7750"*(0.0831)
v 20.6117*(2.2413)  23.9622"*(4.0680) 9.2739"*(1.1646) 9.4382"*(1.2859)  16.8177"(3.3407) 24.2836™(6.7637)
LL 0.0281 0.0567 0.3778 0.3862 0.9387 0.9474
AIC -0.0514 —-0.1068 -0.7508 —-0.7657 -1.8726 -1.8891
BIC —-0.0380 —0.0881 -0.7374 —0.7469 -1.8592 -1.8731
HQC —0.0465 —-0.0999 —-0.7459 —-0.7588 -1.8677 -1.8833
LB(1) 0.8918 0.5351 0.6172 0.4589 0.0061 0.0201
LB(5) € 0.1272 0.0298 0.4480 0.4043 0.0000 0.0000
LB(10) e 0.2371 0.1132 0.1129 0.0402 0.0000 0.0000
LB(25) € 0.3968 0.3177 0.0000 0.0000 0.0000 0.0000
LB(50) ¢ 0.4596 0.5941 0.0000 0.0000 0.0000 0.0000
LB(1) uy,s 0.5298 0.3984 0.3552 0.1868 0.0097 0.0764
LB(5) 1yt 0.0440 0.0021 0.3108 0.2079 0.0000 0.0000
LB(10) ¢ 0.1058 0.0095 0.0668 0.0144 0.0000 0.0000
LB(25) uy,t 0.3346 0.0578 0.0000 0.0000 0.0000 0.0000
LB(50) ¢ 0.3537 0.1065 0.0000 0.0000 0.0000 0.0000
LB(1) ug, 0.0000 0.0002 0.5575 0.5356 0.6716 0.4808
LB(5) ug,; 0.0000 0.0003 0.0007 0.0152 0.0000 0.0000
LB(10) ug, 0.0000 0.0000 0.0037 0.0048 0.0000 0.0000
LB(25) ug, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LB(50) ug 0.3537 0.0000 0.0000 0.0000 0.0000 0.0000
LB(1) 1y 0.0022 0.1281
LB(G) 1y 0.0336 0.1059
LB(10) 1,4 0.1550 0.2473
LB(25) u) s 0.4421 0.0928
LB(50) u ¢ 0.4027 0.0108
EL ¢ 0.0590 0.0054 0.0754 0.0720 0.0000 0.0000
EL 1yt 0.0018 0.0018 0.0674 0.0639 0.0000 0.0000
EL ug; 0.0170 0.0142 0.0383 0.7617 0.0000 0.0000
EL 1, 0.0145 0.0012

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan—-Quinn criterion (HQC);
Ljung-Box (LB); Escanciano-Lobato (EL). Bold numbers indicate either superior likelihood-based metrics or p-values greater than 5%. **
indicates significance at the 1% level.

23



(a) Arctic temperature anomalies
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(b) Antarctic temperature anomalies
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Figure 1. Temperature anomalies from January 1850 to October 2025. Data source: U.S. National Oceanic and Atmospheric Administration
(NOAA).
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(a) Northeast Pacific Ocean temperature anomalies
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(b) Northern Hemisphere temperature anomalies
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(c) Southern Hemisphere temperature anomalies
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Figure 2. Temperature anomalies from January 1850 to October 2025. Data source: U.S. National Oceanic and Atmospheric Administration
(NOAA).
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(a) Arctic temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EGARCH

0.48
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(b) Antarctic temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, degree of fractional integration d; for -FI-QAR-Beta-t-EGARCH
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Figure 3. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models. Notes: We present the degree of fractional integration of temperature anomalies
dy (black) and the fitted quadratic polynomial (red).
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(a) Northeast Pacific Ocean temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t--EGARCH
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(b) Northern Hemisphere temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EIGARCH
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Figure 4. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.. Notes: We present the degree of fractional integration of temperature anomalies
dy (black) and the fitted quadratic polynomial (red).
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(a) Arctic temperature anomalies, 1, + as a function of e; for t-FI-QAR-Beta-t--EGARCH
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Figure 5. Impact of shocks on updating terms: u,, as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, + as a function of e; for +-FI-QAR-Beta-t-EGARCH
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Figure 6. Impact of shocks on updating terms: u, as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(@) Arctic temperature anomalies, 1, as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, 1, as a function of €; for f-FI-QAR-Beta-t-EIGARCH
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Figure 7. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, as a function of ¢; for t-FI-QAR-Beta-t-EGARCH
30,

20

10/

-104

-301

-40 -
-5 -2.5 o 2.5 5 7.5

(b) Northern Hemisphere temperature anomalies, 14, as a function of €; for +-FI-QAR-Beta-t-EGARCH

30,

[ ]
@
-40
“a -2 [6) 2 a 6
25,
0,
_25,
[ ]
-50
“a -3 -2 -1 [6) 1 2 3 a4 5

Figure 8. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, u, ; as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, 1, ; as a function of €; for +-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, 1, ; as a function of € for t-FI-QAR-Beta---EGARCH
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Figure 9. Impact of shocks on updating terms: u,; as a function of ¢; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, ; as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, u, ; as a function of ¢; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, 1, ; as a function of ¢; for t-FI-QAR-Beta--EIGARCH
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Figure 10. Impact of shocks on updating terms: u, ; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, conditional standard deviation o; for -FI-QAR-Beta-t-EGARCH
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Figure 11. Conditional standard deviation o; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t--EGARCH
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(c) Southern Hemisphere temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EIGARCH
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Figure 12. Conditional standard deviation o; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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Supplementary Material

Score-driven long memory dynamics of worldwide
regional temperature anomalies
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!Stetson-Hatcher School of Business, Mercer University, Macon, United States

2School of Economics and Business, Universidad de Navarra, Pamplona, Spain

Abstract: We develop a score-driven fractionally integrated quasi-autoregressive model with
Student’s t innovations (t-FI-QAR), in which the degree of fractional integration d;, the condi-
tional mean, and the conditional scale evolve via likelihood-based updates. Using monthly
U.S. National Oceanic and Atmospheric Administration (NOAA) land-and-ocean tempera-
ture anomalies for six regions (Arctic, Antarctic, Atlantic Ocean, Northeast Pacific Ocean,
Northern and Southern Hemispheres) from January 1850 to October 2025, we show that d,
rises over time across all regions, implying increasingly persistent temperature dynamics.
The increase is strongest in the Arctic and Northern Hemisphere, where we detect a struc-
tural shift over the past three decades consistent with a move toward non-stationary behavior.
Significant but more moderate increases occur in the Atlantic, Northeast Pacific, and Southern
Hemisphere, while the Antarctic exhibits a slight upward trend. Models that allow heavy tails
and time-varying scale outperform homoscedastic specifications in likelihood-based criteria
and diagnostics. The findings indicate that climate shocks now propagate more durably than
in earlier periods, suggesting that stronger and more sustained mitigation and adaptation
policies are needed to counter long-lived deviations in regional temperatures.
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Supplementary Material A

Figure A1. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Figure A2. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Figure A3. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Figure A4. Impact of shocks on updating terms: 1,4, as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Figure A5. Evolution of y; (black) and p; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A6. Evolution of y; (black) and p; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A7. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Figure A8. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p) model.
Figure A9. Standardized error term ¢; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A10. Standardized error term €; from January 1850 to October 2025 for the f-FI(d;)-QAR(p) model.

Figure A11. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A12. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A13. Location score function u,,+ from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A14. Location score function u,,+ from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A15. Degree of fractional integration score function u,; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

Figure A16. Degree of fractional integration score function u,; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Arctic temperature anomalies, 1+ as a function of €; for +-FI-QAR
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(b) Antarctic temperature anomalies, 1+ as a function of €; for +-FI-QAR
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(c) Atlantic Ocean temperature anomalies, 1, as a function of ¢; for +-FI-QAR
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Figure A1. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Northeast Pacific Ocean temperature anomalies, u,, + as a function of e; for +-FI-QAR
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(b) Northern Hemisphere temperature anomalies, 1+ as a function of €; for +-FI-QAR
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(c) Southern Hemisphere temperature anomalies, u,,+ as a function of ¢; for t-FI-QAR
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Figure A2. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Arctic temperature anomalies, 1, as a function of €; for t-FI-QAR
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(b) Antarctic temperature anomalies, 1, as a function of €; for t-FI-QAR
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Figure A3. Impact of shocks on updating terms: 1,4, as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Northeast Pacific Ocean temperature anomalies, 1, as a function of €; for t-FI-QAR
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(b) Northern Hemisphere temperature anomalies, 1, as a function of ¢; for t-FI-QAR
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(c) Southern Hemisphere temperature anomalies, 14, as a function of €; for t-FI-QAR
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Figure A4. Impact of shocks on updating terms: 1,4, as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Arctic temperature anomalies, y; and p; for t-FI-QAR
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(b) Antarctic temperature anomalies, y; and y; for t-FI-QAR
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(c) Atlantic Ocean temperature anomalies, y; and 1 for t-FI-QAR
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Figure A5. Evolution of y; (black) and p; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Northeast Pacific Ocean temperature anomalies, y; and y; for t-FI-QAR
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(b) Northern Hemisphere temperature anomalies, y; and p; for -FI-QAR
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(c) Southern Hemisphere temperature anomalies, y; and p; for +-FI-QAR
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Figure A6. Evolution of y; (black) and p; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.



(a) Arctic temperature anomalies, degree of fractional integration d; for +-FI-QAR
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(b) Antarctic temperature anomalies, degree of fractional integration d; for t-FI-QAR
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(c) Atlantic Ocean temperature anomalies, degree of fractional integration d; for t-FI-QAR
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Figure A7. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Notes: We present the degree of fractional integration of temperature anomalies d; (black) and the fitted quadratic polynomial (red).
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(a) Northeast Pacific Ocean temperature anomalies, degree of fractional integration d; for t-FI-QAR
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(b) Northern Hemisphere temperature anomalies, degree of fractional integration d; for -FI-QAR
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(c) Southern Hemisphere temperature anomalies, degree of fractional integration d; for f-FI-QAR
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Figure A8. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
Notes: We present the degree of fractional integration of temperature anomalies d; (black) and the fitted quadratic polynomial (red).
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(a) Arctic temperature anomalies, standardized error term ¢; for t-FI-QAR
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(b) Antarctic temperature anomalies, standardized error term ¢; for t-FI-QAR
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(c) Atlantic Ocean temperature anomalies, standardized error term ¢; for t-FI-QAR
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Figure A9. Standardized error term €; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p) model.
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(a) Northeast Pacific Ocean temperature anomalies, standardized error term ¢; for t-FI-QAR
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(b) Northern Hemisphere temperature anomalies, standardized error term €; for t-FI-QAR
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(c) Southern Hemisphere temperature anomalies, standardized error term ¢; for {-FI-QAR
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Figure A10. Standardized error term €; from January 1850 to October 2025 for the ¢t-FI(d;)-QAR(p) model.
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(a) Arctic temperature anomalies, scaled error term v; for t-FI-QAR
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(b) Antarctic temperature anomalies, scaled error term v; for t-FI-QAR
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(c) Atlantic Ocean temperature anomalies, scaled error term v; for t-FI-QAR
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Figure A11. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
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(a) Northeast Pacific Ocean temperature anomalies, scaled error term v; for t-FI-QAR
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(c) Southern Hemisphere temperature anomalies, scaled error term v; for t-FI-QAR
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Figure A12. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

14



(a) Arctic temperature anomalies, location score function u,+ for +-FI-QAR
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(b) Antarctic temperature anomalies, location score function u,,+ for ¢-FI-QAR
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(c) Atlantic Ocean temperature anomalies, location score function u, ; for +-FI-QAR
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Figure A13. Location score function u,,+ from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
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(a) Northeast Pacific Ocean temperature anomalies, location score function uy, + for +-FI-QAR
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(b) Northern Hemisphere temperature anomalies, location score function u, for t-FI-QAR
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(c) Southern Hemisphere temperature anomalies, location score function u,,; for t-FI-QAR
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Figure A14. Location score function u,,+ from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
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(a) Arctic temperature anomalies, degree of fractional integration score function u4, for -FI-QAR
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(b) Antarctic temperature anomalies, degree of fractional integration score function u4, for +-FI-QAR
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(c) Atlantic Ocean temperature anomalies, degree of fractional integration score function u,, for t-FI-QAR
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Figure A15. Degree of fractional integration score function u,; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.

17



(a) Northeast Pacific Ocean temperature anomalies, degree of fractional integration score function u,; for t-FI-QAR

30,

204

104

-10/

40 1880 1920 1960 2000 2040
(b) Northern Hemisphere temperature anomalies, degree of fractional integration score function 1, for t-FI-QAR
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(c) Southern Hemisphere temperature anomalies, degree of fractional integration score function u,; for -FI-QAR
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Figure A16. Degree of fractional integration score function u,; from January 1850 to October 2025 for the t-FI(d;)-QAR(p) model.
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Supplementary Material B

Figure B1. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and -FI(d¢)-QAR(p)-Beta-t-EIGARCH models.

Figure B2. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B3. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B4. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B5. Impact of shocks on updating terms: 1, ; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B6. Impact of shocks on updating terms: 1, ; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and #-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B7. Evolution of y; (black) and y; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and -FI(d;)-
QAR(p)-Beta-t-EIGARCH models.

Figure B8. Evolution of y; (black) and y; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.

Figure B9. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and -FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B10. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and -FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B11. Log scale A; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH
models.

Figure B12. Log scale A; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH
models.

Figure B13. Conditional standard deviation o; from January 1850 to October 2025 for the #-FI(d;)-QAR(p)-Beta-t-EGARCH and -FI(d;)-
QAR(p)-Beta-t-EIGARCH models.

Figure B14. Conditional standard deviation ¢; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and -FI(d;)-
QAR(p)-Beta-t-EIGARCH models.

Figure B15. Standardized error term ¢; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.

Figure B16. Standardized error term ¢; from January 1850 to October 2025 for the f-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.

Figure B17. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-
EIGARCH models.

Figure B18. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-
EIGARCH models.

Figure B19. Location score function u,,+ from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.

Figure B20. Location score function u,,+ from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.

Figure B21. Degree of fractional integration score function u,; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta---EGARCH
and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B22. Degree of fractional integration score function u,; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH
and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.

Figure B23. Log scale score function u, ; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.

Figure B24. Log scale score function u, ; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, 1, + as a function of e; for t-FI-QAR-Beta-t--EGARCH
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(b) Antarctic temperature anomalies, 1+ as a function of €; for t-FI-QAR-Beta-t-EIGARCH
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Figure B1. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, + as a function of e; for +-FI-QAR-Beta-t-EGARCH
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Figure B2. Impact of shocks on updating terms: u,+ as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(@) Arctic temperature anomalies, 1, as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, 1, as a function of €; for f-FI-QAR-Beta-t-EIGARCH
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Figure B3. Impact of shocks on updating terms: u,; as a function of ¢; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, as a function of ¢; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, 14, as a function of €; for +-FI-QAR-Beta-t-EGARCH

30,

[ ]
@
-40
“a -2 [6) 2 a 6
25,
0,
_25,
[ ]
-50
“a -3 -2 -1 [6) 1 2 3 a4 5

Figure B4. Impact of shocks on updating terms: u,; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, u, ; as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, 1, ; as a function of €; for +-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, 1, ; as a function of € for t-FI-QAR-Beta---EGARCH
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Figure B5. Impact of shocks on updating terms: u, ; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, 1, ; as a function of €; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, u, ; as a function of ¢; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, 1, ; as a function of ¢; for t-FI-QAR-Beta--EIGARCH
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Figure B6. Impact of shocks on updating terms: u, ; as a function of €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, y; and p; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, y; and y; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, y; and y; for t-FI-QAR-Beta-+-EGARCH
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Figure B7. Evolution of y; (black) and y; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, y; and p; for t-FI-QAR-Beta-t--EGARCH
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(b) Northern Hemisphere temperature anomalies, y; and y; for +-FI-QAR-Beta-t--EGARCH
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(c) Southern Hemisphere temperature anomalies, y; and p; for t-FI-QAR-Beta-t-EIGARCH
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Figure B8. Evolution of y; (black) and y; (red) from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EIGARCH

W U

0.7

1880 1920 1960 2000 2040

(c) Atlantic Ocean temperature anomalies, degree of fractional integration d; for -FI-QAR-Beta-t-EGARCH
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Figure B9. Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-
EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models. Notes: We present the degree of fractional integration of temperature anomalies
dy (black) and the fitted quadratic polynomial (red).

28



(a) Northeast Pacific Ocean temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t--EGARCH
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(b) Northern Hemisphere temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, degree of fractional integration d; for t-FI-QAR-Beta-t-EIGARCH
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Figure B10.
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Degree of fractional integration of temperature anomalies d; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-

EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models. Notes: We present the degree of fractional integration of temperature anomalies
dy (black) and the fitted quadratic polynomial (red).
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(a) Arctic temperature anomalies, log scale A; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, log scale A; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, log scale A; for -FI-QAR-Beta-t-EGARCH
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Figure B11. Log scale A; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH

models.
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(a) Northeast Pacific Ocean temperature anomalies, log scale A; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, log scale A; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, log scale A; for -FI-QAR-Beta-t-EIGARCH
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Figure B12. Log scale A; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-EIGARCH
models.
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(a) Arctic temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EIGARCH

Q,
1840 1880 1920 1960 2000 2040

(c) Atlantic Ocean temperature anomalies, conditional standard deviation o; for -FI-QAR-Beta-t-EGARCH
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Figure B13. Conditional standard deviation o; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EGARCH

0.35

0.25

0.2

15
1840 1880 1920 1960 2000 2040

(b) Northern Hemisphere temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t--EGARCH
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(c) Southern Hemisphere temperature anomalies, conditional standard deviation o; for t-FI-QAR-Beta-t-EIGARCH
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Figure B14. Conditional standard deviation o; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-
QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, standardized error term ¢; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, standardized error term ¢; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, standardized error term ¢; for -FI-QAR-Beta-t-EGARCH
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Figure B15. Standardized error term €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d)-QAR(p)-
Beta-t-EIGARCH models.

34



(a) Northeast Pacific Ocean temperature anomalies, standardized error term ¢; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, standardized error term ¢; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, standardized error term e; for -FI-QAR-Beta-t-EIGARCH
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Figure B16. Standardized error term €; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d)-QAR(p)-
Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, scaled error term v; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, scaled error term v; for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, scaled error term v; for t-FI-QAR-Beta-t--EGARCH
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Figure B17. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-
EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, scaled error term v; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, scaled error term v; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, scaled error term v; for f-FI-QAR-Beta-t-EIGARCH

Figure B18. Scaled error term v; from January 1850 to October 2025 for the t-FI(d;)-QAR(p)-Beta-t-EGARCH and t-FI(d;)-QAR(p)-Beta-t-
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EIGARCH models.
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(a) Arctic temperature anomalies, location score function uy, + for +-FI-QAR-Beta---EGARCH

-0.5

1840 1880 1920 1960 2000 2040

(b) Antarctic temperature anomalies, location score function u,, + for ¢-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, location score function s for -FI-QAR-Beta---EGARCH
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Figure B19. Location score function u,,+ from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.
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a) Northeast Pacific Ocean temperature anomalies, location score function u,, ; for t-FI-QAR-Beta---EGARCH
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(b) Northern Hemisphere temperature anomalies, location score function u,, + for ¢-FI-QAR-Beta-+-EGARCH
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(c) Southern Hemisphere temperature anomalies, location score function u,, + for t-FI-QAR-Beta-t-EIGARCH
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Figure B20. Location score function u,,+ from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t-EGARCH and #-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, degree of fractional integration score function u,,; for t-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, degree of fractional integration score function 1, for +-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, degree of fractional integration score function u4; for {-FI-QAR-Beta-t--EGARCH
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Figure B21. Degree of fractional integration score function u,; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta---EGARCH
and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, degree of fractional integration score function 1, for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, degree of fractional integration score function u,; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, degree of fractional integration score function u, for -FI-QAR-Beta-t-EIGARCH
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Figure B22. Degree of fractional integration score function u,; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta---EGARCH
and t-FI(d;)-QAR(p)-Beta-t-EIGARCH models.
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(a) Arctic temperature anomalies, log scale score function u, ; for +-FI-QAR-Beta-t-EGARCH
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(b) Antarctic temperature anomalies, log scale score function u, ¢ for t-FI-QAR-Beta-t-EIGARCH
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(c) Atlantic Ocean temperature anomalies, log scale score function u, ; for t-FI-QAR-Beta--EGARCH
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Figure B23. Log scale score function u, ; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t--EGARCH and t-FI(d)-QAR(p)-
Beta-t-EIGARCH models.
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(a) Northeast Pacific Ocean temperature anomalies, log scale score function u, ; for t-FI-QAR-Beta-t-EGARCH
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(b) Northern Hemisphere temperature anomalies, log scale score function u, ; for t-FI-QAR-Beta-t-EGARCH
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(c) Southern Hemisphere temperature anomalies, log scale score function u, ; for +-FI-QAR-Beta-t-EIGARCH
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Figure B24. Log scale score function u, ; from January 1850 to October 2025 for the ¢-FI(d;)-QAR(p)-Beta-t--EGARCH and t-FI(d;)-QAR(p)-
Beta-t-EIGARCH models.
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