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Abstract

A number of countries in Sub-Saharan Africa have recently deployed billions of dollars to

improve their electricity infrastructure. However, aggregate data shows that the relative number

of households with an electricity connection at home has barely increased. In this paper we study

the role of blackouts to partially explain why there have been relatively few additional households

with electricity access despite the increase in electrification expenditure. Using geo-localized

survey data from Kenya, we find that households that live in neighborhoods in which power

outages are relatively more frequent are (at least) about 6%-9% less likely to have electricity at

home. We also find that households that have electricity access but which experience frequent

power outages are also less likely to purchase electrical appliances.
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1 Introduction

Back in 2000, around 1.7 billion people lived without electricity; about one third of them were

located in Sub-Saharan Africa (SSA) —IEA (2015) and IEA (2017). Spurred by the Millennium

Development Goals, and more recently by the Sustainable Development Goals (SDG),1 governments

—typically in cooperation with third parties— deployed billions of dollars to improve infrastructure

and expand grid coverage —Enerdata (2017). As a result, electricity access —defined as having an

electric grid within reach— has risen (and is expected to increase) throughout the developing world.

For the particular case of SSA, the electricity access rate increased from 51% to 65% between 2005

and 2015 in a group of 18 selected countries tracked by the Afrobarometer —Oyuke et al. (2016).

In some of these, such as Nigeria and Kenya, the overall access rate by 2015 was above 80%, and

close to universal access was achieved for households in urban settings.

These promising figures on electricity access, though, stand in stark contrast to the on-the-

ground reality, which suggests that all these “grid expansion” efforts are not always fully translated

into actual household benefits: as of 2018, around 602 million people in SSA (i.e., about 48%

of the population) still lack an electricity connection in their homes, and more than 700 million

people in SSA are projected to require it by 2040 —World Bank (2017) and IEA (2018).2 In other

words, even though a large proportion of African households are now “under grid” —i.e., close

enough to connect to a low-voltage line at a relatively low cost (Lee et al., 2016)—, particularly

in (and around) urban areas, many of them remain “unelectrified”. Exploring why this happens

is, therefore, crucial in order to identify cost-effective investment projects, and to alleviate the

documented (costly) mismatch between the supply and demand of electricity infrastructure.

In the present paper we focus on the role of the lack of supply reliability as a factor that explains

why many households remain unelectrified in developing countries.3 As is widely documented, the

current electricity infrastructure in SSA (as in many other developing regions) is highly unreliable.

As a result, blackouts and brownouts are the norm across SSA —Jacome et al. (2019). If this is

1In particular, the SDG #7 aims at ensuring universal “access to affordable, reliable, [...] energy” by 2030.
2Similarly, Palit and Bandyopadhyay (2016) document that while India and Bangladesh have 97.4% and 62% of

the villages covered through grid supply, rural household connection levels are around 74% and 48% respectively.
3Lee et al. (2019) study in their experiment whether outages affected the demand for grid connections. However,

they recognize that “there is a need for research in several areas, including on the impacts of [...] reliability”. Some
other papers have focused on other causes that affect the demand for on-grid connections in developing countries
—Blimpo and Cosgrove-Davies (2019). For instance, Blimpo et al. (2018) study the role of connection charges.
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the case, we argue that households will perceive as lower the benefits of electrification, resulting in

lower demand for electricity connections.

To address this policy-relevant empirical question, we use data from Kenya. This country is of

particular interest as it presents two key ingredients that are often observed across most of the de-

veloping countries, namely, (i) a marked gap between the electricity access rate and the percentage

of connected households, and (ii) a relatively low-reliable service.4 We attempt to establish the

causal link between the reliability of the supply and the demand for electricity connections using

cross-sectional geo-localized data obtained from a survey of over 14,000-households conducted in

Kenya in 2012 and 2013. Based on the average blackouts reported by households in a typical week,

we build a variable that captures the frequency of outages (reliability) at the neighborhood level.

This household survey data is combined with geographical data on electricity transmission lines,

and on the location of power generators.

Using a linear probability model (LPM), we find a negative impact of the frequency of outages

at the neighborhood-level on the probability with which households have an electricity connection,

after controlling for a battery of household-level and neighborhood-level characteristics. In our

preferred model specification, we find that moving from a neighborhood that experiences no outages

to another one that experiences outages on a weekly basis decreases the probability of having a

connection by 6%-9%. These estimates are robust to different specifications and alternative samples.

Moreover, a falsification test suggests that they are unlikely to be driven by unobservable variables

that may be correlated with the frequency of outages.

These results, however, should be interpreted as a lower bound of the true impact of the fre-

quency of outages on households’ electrification decisions. This is because local amenities and the

quality of the infrastructure (such as the reliability of electricity) are relevant variables that affect

the neighborhood choices of a household. Therefore, households that are less likely to have elec-

tricity may have a higher propensity to live in neighborhoods that frequently experience outages

—creating, thus, a potential selection bias effect. Consistently, we document that the estimated

effect is larger (more negative) when using propensity-score matching, which corrects the afore-

4As mentioned above, while the majority of Kenyans have an electric grid within reach, Oyuke et al. (2016)
estimate that, in 2014-15, about 57% of households did not have a connection at home. Moreover, according to them,
about 22% of the households that had electricity reported that their connections work either never, occasionally, or
about half of the time. This figure suggests that, as in many other developing countries, the service is quite unreliable
(additional figures are provided in Section 2).
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mentioned problem.

Although the impact of the lack of a reliable supply on firms’ electrification decisions —Steinbuks

and Foster (2010) and Oseni and Pollitt (2015)—, and even on firms’ productivity, revenue, and

costs is well-documented —De Nooij et al. (2007), Fisher-Vanden et al. (2015), Allcott et al. (2016),

and Cole et al. (2018)—, surprisingly few studies have focused on the effect of power outages

on households’ electrification decisions.5 To the best of our knowledge, the only exception is

by Millien (2017), who finds a negative impact of outages on the probability of connection for

households in Kenya —controlling for households’ poverty levels— using a probit model with cross-

sectional data aggregated at the district level. However, we follow the arguments by Allcott and

Taubinsky (2015) and Angrist and Pischke (2008) and estimate instead an LPM that includes a

rich battery of household-level and neighborhood-level control variables that may explain household

decisions concerning electrification, and as a consequence, could bias the estimates if not accounted

for. Moreover, our matching estimation also accounts for the possibility of a household-location

selection, an effect that Millien (2017) ignores.

It is worthwhile recalling that an electricity connection (per se) does not have an intrinsic value

attached to it, but it is rather a necessary condition to provide a number of benefits to households

(e.g. appliances access, health benefits). However, it may not be a sufficient one. In fact, recent

reports by the World Bank —Bhatia and Angelou (2015)— and by the United Nations (2019) have

criticized the frequently-used “binary metric” of whether people have/do not have a connection, as

it can be misleading: the supply of electricity may not be reliable enough to power commonly-used

electricity-utilizing assets. Bearing this criticism in mind, in this paper we go beyond the question

of the impact of supply reliability on “pure” electrification decisions by exploring also whether,

among those households that have a connection, frequent outages do also have an impact on those

subsequent post-electrification decisions, such as on the purchase of domestic appliances.

In particular, we focus on the ownership of refrigerators and televisions, which —as documented

by Lee et al. (2016)— are some of the most desired appliances among Kenyans. Moreover, these

appliances are typically associated with a substantial increase in welfare in developing countries6, as

5Some studies have explored the impact of the lack of supply reliability on households’ willingness to pay for
electricity. For instance, Dzansi et al. (2018) use data from Ghana to provide evidence of a negative impact of
outages on subsequent electricity bill payments. Using survey data from 714 villages in rural India, Kennedy et al.
(2019) document a positive relationship between quality of service and willingness to pay for an electricity connection.

6Using data from Honduras, the Inter-American Development Bank (2019) estimates a consumer surplus associated
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they are directly linked to greater food safety and lower incidence of stomach diseases (for the case

of refrigerators) —Heller et al. (2005)—, and to lower acceptability of domestic violence and greater

women’s autonomy (for the case of television) —Jensen and Oster (2009). In line with the previous

results, we find evidence that frequent outages discourage the ownership of these appliances among

households with a connection. The effect remains negative and significant when using instrumental

variables, which correct for a potential reverse causality problem —as overload-related outages are

more likely in neighborhoods where a substantial number of households own these appliances.7

Our empirical results deliver (at least) two key insights that inform energy-policy decisions.

First, they suggest that the ratio of “additional population with connections” to “additional pop-

ulation with access” of grid expansion projects may be substantially below one if the reliability of

the service is poor. This is important, as policymakers that ignore this gap may (systematically)

overestimate the benefits of these projects. Second, they suggest that the gains from improving

the quality of the existing infrastructure could be substantial if we consider that greater reliability

increases households’ likelihood of connection and appliance ownership. Therefore, these results

refer directly to the well-acknowledged tradeoff between extending basic access to more people and

enhancing the access of those already served —Inter-American Development Bank (2019).

The rest of the paper proceeds as follows. Section 2 provides some background on the persistence

of outages in SSA. In Section 3 we study the impact of outage frequency on households’ demand

for electricity connections. In Section 4 we study the impact of outage frequency on households’

demand for appliances. Finally, Section 5 discusses some policy implications and concludes.

2 Background: pervasive outages in SSA and consequences

Although power markets all over the world are exposed to unplanned outages, in developed countries

these outages are, in general, rara avis, and are typically caused by extreme weather events —see,

for instance, Table B.1 in EIA (2019). By contrast, blackouts and brownouts are the rule rather

than the exception in developing countries. For the particular case of SSA, the International

Energy Agency (IEA) estimates that power was unavailable about 540 hours per year in 2014 —

IEA (2014). In the same vein, according to the most recent data provided by the World Bank’s

with television ownership of around $17.1 per household per year, and of $23.3 associated with refrigerator ownership.
7Some additional robustness checks are also discussed in Section 4.
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Enterprise Surveys, firms experience on average 9 outages per month. The case of Kenya is not an

exception: according to Farquharson et al. (2018), power is unavailable in this country about 420

hours per year, and there are about 6.3 electrical outages in a typical month.

As explained by an independent evaluation group of the World Bank —IEG (2015)—, the main

reason behind the persistence of outages in SSA is the lack of commercial viability of the electricity

business. According to Huenteler et al. (2017), electric utilities in developing countries are usually

well-connected to government authorities, who see electricity users not as customers but as voters.

Hence, underpricing of electricity is popular for these authorities and, if implemented, is difficult

(politically-costly) to remove. In fact, it is common to observe electricity tariffs set well below

full recovery cost across SSA.8 This under-recovery of costs is further exacerbated by certain other

supply and demand-related issues such as droughts,9 political and social conflict, lack of private

(pro-business) investors, and billing and collection inefficiencies —Eberhard et al. (2008).

All these revenue-constraint issues experienced by electric utilities result in lack of investment in

operation and maintenance (O&M) of the existing infrastructure (and also in additional facilities),

leading thus to excessive transmission losses and recurrent power outages —IEG (2015). In line

with this idea, Taneja (2017) documents that more than half of the outages experienced in the city

of Nairobi (Kenya) in a typical year are caused by lack of O&M-related issues, such as equipment

failures, loss of supply, problems in transformers, cables, poles, and the contact of objects.10

This lack of reliability of the electricity supply has notorious negative implications for firms in

terms of profits and productivity in developing countries —Allcott et al. (2016) and Cole et al.

(2018). Consequently, as Steinbuks and Foster (2010) explain, firms perceive the benefits of electri-

fication as being lower. In this paper, we argue that an analogous argument applies to households:

if power outages are frequent, the well-documented benefits of electrification —Bernard (2010) and

Chakravorty et al. (2014)— will be perceived as being lower. This, in turn, results in (i) lower

household electrification rates,11 and (ii) lower demand for electric-powered appliances among the

8According to Eberhard et al. (2008) (at the time when they were writing) “nowhere in Sub-Saharan Africa do
residential or commercial and industrial customers pay full cost-recovery prices”. Similar issues are experienced in
India —Burgess et al. (2020).

9Many countries in SSA are highly dependent on hydropower —WEC (2013).
10In addition, this author documents that about one third of the outages are due to local overloads on transformers.

This information will be important in Section 4 —when we study the effect of outages on domestic appliances
ownership— as local overloads are more likely to occur in areas with an abundant presence of high-power domestic
appliances (such as refrigerators), leading thus to an aforementioned potential reverse causality problem.

11Some preliminary evidence is also provided in the appendix, where we plot an index of perceived quality of supply
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households that have a connection. Throughout the rest of the paper we develop a thorough em-

pirical strategy to analyze these two hypotheses using the aforementioned household-level survey

data from Kenya.

3 Effect of Outages on Electricity Connections

3.1 Empirical framework

The first regression model that we estimate examines the effect of the frequency of outages in a

neighborhood on the probability that households located in such a neighborhood are connected

to electricity.12 In this regression model, the unit of observation is a household i situated in

neighborhood j —which is technically called Enumeration Area (EA)13—, in city c, and province

p.14 The effect of the frequency of outages in EA j on the probability that household i in EA j has

an electricity connection at home is measured in the following cross-sectional regression:

yi,j,c,p = α0 + α1θj,c,p + α2Xi,j,c,p + α3Zj,c,p + λp + λc + εi,j,c,p (1)

where yi,j,c,p is a dummy variable that is equal to 1 if household i is connected to electricity and

0 otherwise; θj,c,p captures the frequency of outages in EA j; Xi,j,c,p is a vector of household

characteristics; Zj,c,p is a vector of EA characteristics; λp and λc denote province and city fixed

effects respectively; and εi,j,c,p is the usual error term.

We estimate equation 1 by using ordinary least squares (OLS), with robust standard errors

clustered at the EA level —Moulton (1990). Considering that the dependent variable is a dummy

one, the usage of OLS means that the estimated technique takes the form of a linear probability

model (LPM). Although the LPM might present some problems in comparison with the usual probit

(or logit) regression models —Horrace and Oaxaca (2006)—, Greene (2002) and Bellemare et al.

against the average number of households with electricity for each country and year. In line with our argument, the
raw aggregate data and the fitted values suggest a positive relationship between these two variables.

12We focus on households that have/do not have an electricity connection to a grid (either to the national grid
or to a micro-grid). As we explain later, we rule out from our analysis those few households that have alternative,
on-side generation devices, such as solar panels or mini-generators.

13An EA is the smallest administrative level included in the sample (similar to census blocks in the United States).
14Kenya was divided into eight provinces until 2013, when the provinces were replaced by a system of 47 counties.

Since the sample was based on 2009 census data, we keep the provinces in our analysis. We do not include county
dummies because all the cities in the sample but one are located in different counties.

7



(2015) argue that the LPM is a better suited technique in the presence of fixed effects. Moreover,

as explained by Allcott and Taubinsky (2015), in typical cases where the true probability model is

not known (as is our case), Angrist and Pischke (2008) advocate for using the LPM instead of an

arbitrary non-linear model (i.e., probit or logit).15

3.2 Potential threats to identification

In equation 1, our coefficient of interest is α1, which measures the causal impact of the reliability

of the electricity supply at the EA level on a household’s probability of having a connection. The

identification of the causal effect hinges on the assumption that, after controlling for a set of relevant

households and EA characteristics that potentially influence households’ electrification decisions,

more frequent outages reduce their probability of having a connection. Nonetheless, this empirical

strategy highlights at least three major threats to identification of which we should be aware.16

The first potential threat to identification arises from the concern that the “allocation” of

households across EAs is not random. Therefore, one may be concerned that those households that

are more willing to purchase an electricity connection (for instance, because they are richer, better

educated, or live closer to the grid) are more likely to live in EAs that are less exposed to outages.

If this is the case, there may be, thus, a selection effect problem, resulting in biased estimates.

To address this potential concern, we use propensity score-matching17 —Rosenbaum and Rubin

(1983). We identify covariates that are likely to affect households’ EA choices (income, education,

etc.) and estimate, for each household, the propensity score of dwelling in an EA that is highly

exposed to outages. We end up with sub-samples of households with similar characteristics both

in EAs highly affected by outages (treated) and in EAs that are not affected by outages (control),

reducing thus the potential bias created by the aforementioned selection effect.

An additional potential threat to identification relates to the concern that, in some particular

neighborhoods, a marginal household connected to electricity is likely to cause additional outages

by overloading the local system.18 In particular, this is the case in neighborhoods where informal

15We have also checked that our results are not substantially different if we employ instead a probit model —as
done by Millien (2017). The set of results using a probit regression model are included in the appendix.

16Additional and alternative concerns regarding sample selection are discussed in Section 3.4.
17Dehejia and Wahba (2002) explain that propensity score-matching is an appropriate technique to reduce the

sample selection bias in non-experimental environments with a rich set of covariates (as it is our case).
18As discussed above, a number of outages in Kenya are reported as being caused by local overloads on transformers.
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connections are relatively common —as informal connections are typically associated with frequent

outages; see Jamil (2013) and Lewis (2015)—, and in neighborhoods where households are likely

to use electricity to plug-in high-power appliances (such as refrigerators). These neighborhoods

are, thus, a potential source of endogeneity (“reverse causality”) that bias our OLS coefficients.

We attempt to mitigate this concern by re-estimating equation 1 after excluding from the sample

EAs in which there is at least one household aware of the existence of informal connections, and in

which there is at least one household that owns a refrigerator.19

A final potential threat to identification arises due to the fact that there might be some un-

observed characteristics that are potentially correlated with the frequency of outages at the EA

level (θj,c,p). If this were the case, one could argue that our main results are not driven by outages

frequency, but by such (θj,c,p-correlated) unobserved characteristics (hidden bias).

To address this potential concern, we perform a falsification test using a fake outcome that is of

“similar nature” as our actual outcome variable yi,j,c,p (have/do not have an electricity connection)

but that is known to be unaffected by the main explanatory variable of interest (the frequency of

outages) —Rosenbaum (2002). In particular, we use a dummy that captures whether a household

has a piped water connection as a fake outcome. By estimating equation 1 on this alternative

(fake) outcome, the result of the “treatment” —i.e., exposure to frequent outages— would shed

some insight on whether our main result is driven by a hidden bias: if this fake outcome fails to

replicate the observed performance for the actual treatment, then we succeed in falsifying the claim

that the estimated coefficient of interest (α1) is driven by the unobservable characteristics.

3.3 Data sources

To estimate the coefficients of the previous regression model, we use data from different sources. Our

main source of data is the “Kenya - Cities Baseline Survey 2012-2013”, collected by the University

of Chicago’s National Opinion Research Center (NORC) under a contract with the World Bank

—Gulyani et al. (2012). The survey contains detailed demographic, infrastructure access, and

socio-economic information, as well as the geo-localization of a randomly selected representative

19Ideally, as we do in Section 4, one should instrument the frequency of outages (θj,c,p) using a variable that is
highly correlated with θj,c,p but that does not affect households’ electrification decisions, as a potential solution for
this concern that does not imply losing some data points. Unfortunately, the instrument that we use in Section 4
—the average number of informal connections in each EA— is unlikely to satisfy the latter condition, as the presence
of informal connections potentially increases households’ willingness to have a (cheap and illegal) connection at home.
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sample of over 14,000 households in and around 15 major urban centers across the eight (former)

provinces of Kenya, both in slum and non-slum areas, and in rural and urban areas. The sample

of households was selected at the EA level20 —the smallest geographic census unit in Kenya— in

(and around) each metropolitan area, selected from the 2009 census by the Kenya National Bureau

of Statistics (KNBS).21 Figure 1 contains a map with the households included in this study (black

dots), and the counties for which data is available (indicated in dark gray).

Figure 1: Map of Kenya with households used in the empirical analysis

Note: The figure shows the map of the households included in the survey. Kenyan counties for which there are households included in the
survey are drawn in dark grey (counties for which there are no households included in the survey are drawn in light grey). Each dot on the map
represents a household. The black lines represent high voltage or medium voltage transmission lines in Kenya, obtained from the World Bank’s
Africa Infrastructure Country Diagnostics (AICD) team —AICD (2009).

20According to the 2009 Kenya census, there are on average 92.6 households in each of the EAs included in the
survey, and 29.2 surveyed households on average per EA. We drop from our sample 495 households for which the
identifier of the EA is not available.

21Gulyani et al. (2014) and Salon and Gulyani (2019) provide details on the stratification and sampling procedure.
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The dataset contains the answers of all the surveyed households to the following question:22

“is your dwelling unit connected to electricity?” Using the answers to this question, we create our

dummy variable of main interest, which is equal to 1 if the answer of household i is “Yes”, and is

equal to zero if the answer is “No”.

Next, we build a variable that measures the frequency of outages for each EA. We use the

information on the average weekly outages reported by households that use electricity as their

primary source of lighting.23 In particular, we create a dummy variable that equals 1 if a household

that uses electricity as the main source of lighting experiences outages at least once a week, and

that equals 0 if a household that uses electricity as the main source of lighting rarely experiences

outages. Then, our outages-frequency variable, θj,c,p, is simply calculated as the average of this

dummy at the EA level. That is, for each household i that lives in EA j, city c and province p, we

calculate

θj,c,p =

∑nj,c,p
i=1 1{Outages at least once a week}i,j,c,p

nj,c,p
(2)

where nj,c,p is the total number of households that use electricity as the main source of lighting in

each EA.

Figure 2 contains two heatmaps of the outages-frequency variable (θj,c,p) for all the EAs consid-

ered in this study in the Nairobi county —Subfigure 2a— and in the Mombasa county —Subfigure

2b. Areas shaded in dark colors indicate that θj,c,p is closer to 1 (greater outages frequency), while

areas shaded in light colors indicate that θj,c,p is closer to 0 (lower outages frequency). For the

particular case of the Nairobi county, darker colors are mostly observed in poorer areas and slums

(such as Kibera and Mathare), while lighter colors are observed in wealthier and commercial areas,

such as Gigiri and the Central Business District (CBD).

Considering that the outages-frequency variable at the EA level is based on information provided

by the households that use electricity as their primary source of lighting, we drop from our sample

the households that live in EAs where no household uses electricity for lighting purposes.24 Still,

one might be concerned that in some EAs there are too few households that use electricity to

22We drop two households for which there is no answer to this question.
23We focus on households that use electricity as the primary source of lighting to create our outages-frequency

variable because these households are expected to be more aware of the frequency with which outages occur. As
shown in the appendix, our results prove robust to alternative definitions of the outages-frequency variable.

24There are 868 households (less than 6%) that live in EAs where no one uses electricity for lighting purposes.
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Figure 2: Outages-frequency heatmap by EA in selected counties

(a) Nairobi county

(b) Mombasa county

Note: The figure shows a heatmap of the frequency of outages for each of the EAs that we use in the study both in the Nairobi county (a) and
in the Mombasa county (b). The heatmap was built using the average frequency of outages per EA (θj,c,p), where the geo-localization of each
EA was based on the centroid of the surveyed households that live in each EA. Areas shaded in dark colors indicate greater frequency of outages
(θj,c,p close to 1), while areas shaded in light colors indicate lower frequency of outages (θj,c,p close to 0).
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light the house (maybe one or two households). If that is the case, one could argue that the

main explanatory variable of interest (θj,c,p) might not be “informative” enough. Therefore, as a

robustness check, we also estimate our model after removing those EAs in which less than 10% of

the surveyed households use electricity as the main source of lighting.25

The survey contains additional household and EA characteristics that are also likely to impact

households’ electrification decisions. In particular, we include in our estimation the following con-

trol variables: household size (number of members); education of the head of the household (a

dummy indicating completion of primary education); expenditure in a typical month, in Kenyan

Shillings (KSh),26 two dummies indicating if there are informal connections and street lights in

the street where the household lives, a dummy indicating if the EA is in a rural or urban area, a

dummy indicating if it is in a slum, number of months that the household has been occupying the

house, a dummy indicating if the walls of the house are permanent/robust,27 and city and province

dummies. At the time when the survey was conducted, connection charges were uniform (KSh

35,000) throughout the whole country —Ministry of Energy, Government of Kenya (2012) and Lee

et al. (2016).

Finally, following the arguments provided by Van de Walle et al. (2013), Squires (2015) and

Blimpo et al. (2018), one might also argue that the proximity of households to electricity infrastruc-

ture may also have an impact on whether a household is connected to electricity. Thus, we combine

our household-level survey data with geographical information both on the location of high voltage

and medium voltage transmission lines, and on the location of power-generating facilities in Kenya.

The geo-localization of the transmission lines —which are also included in the map provided in

Figure 2— was obtained from the World Bank’s Africa Infrastructure Country Diagnostics (AICD)

team —AICD (2009).28 The data on power-generating facilities was obtained from different sources,

namely, the World Bank (2014) and the World Resources Institute (2018).29 Additional details on

25Results prove robust to alternative percentages.
26Monthly expenditure is computed as the sum of the expenditure in the last month on the following items:

food, fuel, clothing and footwear, household supplies, domestic services, transportation, recreation, tobacco, alcohol,
insurance, education, taxes, home furnishing and maintenance, and vehicle repair.

27Permanent/robust walls are walls built using brick, block or stones (as opposed to non-permanent/non-robust
walls, which are those built using mud, wood, tin, or corrugated iron sheets).

28This dataset was released in 2009, and (according to the website) the last updated was in 2017. However, the
transmission lines included in this dataset exactly coincide with those that were installed at the time when the survey
was conducted (2012-2013). For a visual comparison, see Figure 2 and Figure 1 in the report by the Ministry of
Energy and Petroleum, Government of Kenya (2016) (which includes a map with the transmission lines back in 2013).

29We excluded those power plants that were commissioned after 2013 (when the survey was conducted).
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the power plants considered (and a map of them) are included in the appendix.

Using the aforementioned geo-localized data, we compute the distance (as the crow flies) from

each household’s dwelling unit both to the closest transmission line and to the closest power plant.

These two variables (“distance to the closest grid line” and “distance to the closest power plant”),

which are also included as controls in our regression analysis, were computed for all the households

in the dataset except for those that live in the Garissa county. The reason being that, as shown in

the map included in Figure 2, as of 2013 consumers in Garissa county (the Eastern county drawn

in dark grey in the map) were not served by the national grid.30

3.4 Sample and summary statistics

The “Cities Baseline Survey 2012-2013” contains information on 14,581 households in Kenya. How-

ever, besides excluding from our sample 868 households that live in EAs where no one uses electricity

as the main source of lighting, we also exclude 90 additional households with off-grid generators

at home, and/or with portable batteries that can be charged elsewhere, and then used at home.

The reason is that these households are less likely to have on-grid connections, regardless of the

frequency of outages.31 Moreover, we also drop from our sample two households that are on a

waiting list to get one, as these households are (presumably) willing to get a connection but, due

to bureaucratic and technical barriers, do not have it.

According to the information provided by the survey, approximately half of the households

are reported as “not living on a permanent basis in their dwelling units” at the time when the

survey was conducted. This issue might be problematic since, for the obvious reasons, one could

assume that non-permanent households potentially have less incentives to invest in an electricity

connection, regardless of the reliability of the network. Therefore, considering, on the one hand,

that these households may potentially underestimate the coefficient of interest, but bearing in mind,

on the other hand, that this subset of households is quite large (and potentially informative as well),

we present our estimates using both the full set of households and the subset of “permanent” ones.

30As of 2016, construction was being undertaken to connect Garissa to the grid (the 132kV transmission line
Kindaruma-Mwingi-Garissa line) —Ministry of Energy and Petroleum, Government of Kenya (2016). Meanwhile,
most of the households in Garissa get their electricity from local mini-grids (mostly solar).

31We acknowledge that this “substitutability” between on-grids connections and off-grid generators/batteries is not
unambiguous. In fact, Lee et al. (2016) argue that home solar systems are not a “substitute” for grid power, but rather
a “complement” (i.e., as a “back-up” device when on-grid connections fail). Thus, as a robustness check, we include
in the appendix our results including also those households that own batteries, solar panels, and/or mini-generators.
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Next, we keep in our sample the subset of households that rent a house and whose electricity bill

is included in the rent paid to the landlord. We assume that, if a landlord includes the electricity bill

in the rent, it is because she expects the electricity supply to be reliable. However, one might also

argue that landlords’ electrification decisions could have been made irrespective of the frequency

of outages —for instance it could have been made in order to charge a higher rent (Choi and Kim,

2012). Therefore, as a robustness check, we also estimate our regression model after removing

those households whose rents include the monthly electricity bill (see the appendix). Finally, we

also keep in our sample 184 households that do not pay directly to the utility company either, but

that rather use prepaid cards. Our results also remain robust after dropping these households.

Table 1: Summary statistics (by sub-sample of households)

Panel A1: Full sample
Variable Mean Std. Dev. Min. Max. N

Hh has electricity 0.682 0.466 0 1 13,102
Outages frequency 0.372 0.302 0 1 13,102
Slum 0.292 0.455 0 1 13,102
Urban 0.851 0.356 0 1 13,102
(log) Month expenditure 8.535 0.996 0 13.874 13,102
Robust/permanent wall 0.42 0.494 0 1 13,102
Distance grid (no Garissa) 6.135 8.521 0.011 35.024 10,337
(log) Months in dwelling 3.459 1.369 0 6.951 13,078
Hh size 2.967 1.824 1 17 13,040
Informal connections 0.08 0.272 0 1 12,894
Head of hh primary educ 0.884 0.32 0 1 13,102
Street lights 0.241 0.428 0 1 13,102
Distance plant (no Garissa) 35.272 29.482 0.236 104.432 10,337

Panel A2: Permanent households
Variable Mean Std. Dev. Min. Max. N

Hh has electricity 0.859 0.348 0 1 4,177
Outages frequency 0.327 0.272 0 1 4,177
Slum 0.258 0.438 0 1 4,177
Urban 0.956 0.205 0 1 4,177
(log) Month expenditure 8.746 1.068 0 13.874 4,177
Robust/permanent wall 0.649 0.477 0 1 4,177
Distance grid (no Garissa) 6.589 6.787 0.011 21.724 2,650
(log) Months in dwelling 3.387 1.302 0 6.733 4,169
Hh size 3.02 1.861 1 17 4,161
Informal connections 0.062 0.241 0 1 4,127
Head of hh primary educ 0.919 0.273 0 1 4,177
Street lights 0.324 0.468 0 1 4,177
Distance plant (no Garissa) 21.117 22.211 0.236 65.504 2,650

Note: The table shows summary statistics for all the households included in our different (sub-)samples. Across panels, the table shows
summary statistics for the full sample of households used in the empirical analysis in Panel A1; and summary statistics for all the households
included in Panel A1 but excluding non-permanent households in Panel A2. Across columns within each panel, the first column shows means of
the variables for all households, the second column includes the standard deviations, the third column includes the minima, the fourth column
shows the maxima, and the last column includes the number of observations for each variable. Sections 3.3 and 3.4 offer additional information
on the institutional context and the data.
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After dropping and keeping all the aforementioned households, our final sample contains 13,102

households, for which we have information on the electrification status, and the city and province

in which they live. Summary statistics for all the aforementioned variables for the final sample that

we use in our empirical study are included in Table 1, Panel A1. In Panel A2 we include summary

statistics after removing the subset of “non-permanent” households.

3.5 Empirical results

Our main empirical results are included in Table 2, which shows the estimated coefficients of the

outages-frequency variable (θj,c,p) —and of all the other controls, when included— on the dummy

indicating if a household has an electricity connection (yi,j,c,p) —equation 1. We include the (OLS)

estimated coefficients with standard errors clustered at the EA level in parenthesis.

Columns (1)–(3) include the estimation results using all the households in our final sample.

First, we present the results if no control variables are included —Column (1). In this case, the

estimated coefficient is negative and significant at the 5% level. Our estimation suggests that

households that live in EAs frequently exposed to power outages on a weekly basis are about 8%

less likely to have a connection relative to households that live in EAs that experience no outages.

Next, column (2) includes the set of households’ characteristics as controls. In particular, we

control for household monthly expenditure (income), education of the head of the household, quality

of the dwelling unit (proxied by the quality of the walls), household size, and the number of months

that the household has been living in the dwelling unit, together with city and province dummies.

Then, in Column (3) we include the full set of household-level and EA-level controls discussed in

Section 3.3. In these two cases, our estimates suggest that households living in EAs where power

outages are more frequent are about 6% less likely to have an electricity connection.

Finally, in columns (4)-(6) we estimate equation 1 after removing from our sample households

that are not reported as permanent dwellers. In this case, our estimates suggest that for households

living in EAs where outages are more frequent the probability of having an electricity connection

decreases by 9%. This coefficient is significant at the 5% level if just the household characteristics

and no other control variables are included; and significant at the 10% level if the full set of controls

is included. Consistent with the above discussion, we see that removing those households that do

not live on a permanent basis in their dwelling units increases (makes more negative) the estimated
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Table 2: Impact of Outages on Electrification Decisions

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency -0.0789∗∗ -0.0583∗∗ -0.0571∗ -0.0921∗∗ -0.0879∗∗ -0.0902∗

(0.0350) (0.0294) (0.0328) (0.0447) (0.0431) (0.0509)

(log) Month expenditure 0.129∗∗∗ 0.125∗∗∗ 0.0587∗∗∗ 0.0538∗∗∗

(0.00736) (0.00828) (0.00836) (0.0103)

Head of hh primary educ 0.207∗∗∗ 0.208∗∗∗ 0.189∗∗∗ 0.206∗∗∗

(0.0147) (0.0159) (0.0299) (0.0379)

Robust/permanent wall 0.228∗∗∗ 0.236∗∗∗ 0.0248 0.0580∗∗∗

(0.0150) (0.0168) (0.0192) (0.0215)

Hh size -0.0240∗∗∗ -0.0188∗∗∗ -0.0146∗∗∗ -0.00409
(0.00278) (0.00301) (0.00480) (0.00517)

(log) Months in dwelling -0.0152∗∗∗ -0.0128∗∗∗ -0.00640 -0.00937
(0.00337) (0.00379) (0.00537) (0.00706)

Distance grid (no Garissa) 0.00603∗ 0.00879∗

(0.00356) (0.00471)

Informal connections 0.0647∗∗∗ 0.0281
(0.0210) (0.0260)

Street lights 0.0699∗∗∗ 0.0717∗∗∗

(0.0188) (0.0189)

Distance plant (no Garissa) -0.00130 0.00102
(0.00179) (0.00323)

Slum -0.0879∗∗∗ -0.0889∗∗∗

(0.0228) (0.0239)

Urban 0.112∗∗∗ 0.167∗∗∗

(0.0241) (0.0557)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,102 13,016 10,121 4,177 4,153 2,603
R2 0.048 0.209 0.228 0.032 0.088 0.124

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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effect of outages on households’ electrification decisions in all the model specifications and restricted

sub-samples relative to the estimates found in columns (1)-(3).

3.6 Robustness checks

3.6.1 Endogeneity and propensity score-matching

As explained above, for the regression model specified in equation 1, there may be some concern

with regard to a potential “household-EA” selection problem. In particular, one might argue that

households that are more likely to have a connection —for instance, those with higher income or

better education— are also more likely to live in EAs where outages are less frequent.32 Thus, one

could argue that the previous coefficients are biased, as they are not capturing the true impact of

outages on having electricity at home, but rather the “systematic” differences that exist between

households that live in EAs highly exposed to outages and those that live in EAs less exposed to

outages.

To address this potential concern, we use propensity score-matching —Rosenbaum and Rubin

(1983) and Rosenbaum and Rubin (1984). As explained by Dehejia and Wahba (2002), this tech-

nique is an appropriate one to mitigate the selection effect bias if there is availability of a rich set

of covariates that explains the selection of individuals into “treatment” (in our case, the selection

of households into EAs highly affected by outages). Thus, if relevant differences in households’ EA

choices are captured by these covariates, denoted Xi (income, education, etc.), matching yields an

unbiased estimator. The key assumption for identification is that the information included in Xi

is sufficient to make the choice of having an electricity connection independent of the EA choice.

We, thus, divide households into two different groups, depending on whether they live in an EA

highly exposed to outages (the treated group, denoted Ti = 1), or in an EA that never experiences

outages (the control group, denoted Ti = 0). Then, we estimate the probability of living in an EA

frequently exposed to outages (Ti = 1) conditional on covariates Xi (using a probit regression),

and we calculate each household’s predicted propensity score, denoted p̂i. Rosenbaum and Rubin

(1983) show that the conditional independence result extends to the use of propensity scores. That

is, given an outcome of interest yi (in our case, having an electricity connection),33 if yi⊥Ti|Xi

32This idea is consistent with the findings by Aidoo and Briggs (2019).
33For the sake of simplicity and expositional clarity, we omit the additional sub-indices (j, c, and p).
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then yi⊥Ti|p̂i(Xi). Therefore, after conditioning the choice of EA on the propensity scores, the

estimation of the effect of living in an EA frequently exposed to outages on the probability of having

a connection does not capture this potential selection effect bias anymore.

An additional complication arises due to the fact that our “treatment” (i.e. living in an EA

frequently exposed to outages) is captured by the variable θj,c,p, which does not take the values 0 and

1 only, but it rather takes values between 0 and 1 (in a continuous fashion). To overcome this issue,

we estimate a rolling version of the propensity score-matching estimator, in which the “treatment”

(exposure to frequent outages) is defined in an incremental way. By doing so, we capture the

(incremental) effect on electrification decisions for different definitions of treated households.

In particular, we discretize the continuous variable θj,c,p in equal bins (or increments) of 0.1.

That is, we define θxj,c,p as those EAs whose value of θj,c,p is greater than or equal to x, where

x ∈ {0.1, · · · , 0.9}. Then, we estimate the effect of outages exposure on the probability of having a

connection (relative to control households) by defining as treated the households that live in EAs

with θxj,c,p for every x.34 That is, first we estimate the effect assuming that the treated households

are those for which the outages-frequency variable is greater than (or equal to) 0.1; then, we estimate

the effect assuming that the treated households are those for which the outages-frequency variable

is greater than (or equal to) 0.2; and so on (until θ0.9
j,c,p). If this setup is correct, we should expect

an increasing (more negative) effect on the probability of having a connection as x increases; that

is, as we consider households that live in EAs that are increasingly affected by outages.

The results of this exercise are included in Figure 3. The blue squares and the red triangles

capture the coefficients of the effect of frequent outages on the probability of having a connection for

different definitions of treated households (as defined by θxj,c,p) using all the households in our sample

(the vertical lines capture the 95% confidence intervals). To obtain the coefficients captured by

the blue squares, we match households using the restricted set of household-level variables —those

included in Column (2) in Table 2—, and to obtain the coefficients captured by the red triangles

we match households using the full set of household-level variables. As expected, we find that for

greater values of x, the impact of outages on households’ electrification decisions becomes more

negative and more significant. For instance, households that live in EAs where θj,c,p is greater than

0.9 are, on average, 13-15% less likely to have an electricity connection in comparison to similar

34In all cases, the control households are those that live in EAs for which θj,c,p is equal to 0.
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Figure 3: Propensity-score matching estimator for different “treated” samples
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Note: The figure shows the propensity-score matching coefficients for the outages-frequency variable (θj,c,p) after matching treated and control
households. From left to right, the households that live in EAs for which the outages-frequency variable is greater than x ∈ {0.1, · · · , 0.9} are
considered as treated; and the control households are those that live in EAs for which the outages-frequency variable is equal to zero. Households
are matched (using propensity-score matching) on (i) income, quality of the dwelling unit (proxied by “robust wall” dummy), head of household
education, urban dummy and slum dummy (coefficients are displayed with a square); and on (ii) the full set of household-level controls included in
our main regressions (coefficients are displayed with a triangle). Vertical bands represent ±1.96 times the standard error for each point estimate,
and the significance levels of the estimated coefficients are as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. These results are obtained using full
set of households; very similar results are obtained using alternative sub-samples (see the appendix).

households that live in EAs where outages never occur.35

3.6.2 Falsification test

One could also argue that the frequency of outages (θj,c,p) may be correlated with some other

unobservable variables that may also explain whether households have an electricity connection at

home. If this were the case, then the effect that we find would not be driven by θj,c,p, but rather

by these θj,c,p-correlated (unobservable) variables (hidden bias) —Rosenbaum (2002).

To avoid this potential criticism, we perform a placebo-based falsification test. More precisely,

we estimate equation 1 again but we use a fake outcome variable instead that is “similar” to our

actual outcome variable (a dummy indicating whether a household has an electricity connection)

but that is known to be unaffected by the frequency of outages. In particular, we use a dummy

variable that indicates whether a household has/does not have a connection to piped water as our

fake outcome. If there are no θj,c,p-correlated unobserved variables that might potentially explain

35Very similar results are obtained if we use instead the sub-set of “permanent” households (see the appendix).
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whether a household has a piped water/electricity connection at home, then we should expect the

estimated coefficient of θj,c,p to be close to zero and not significant for the falsification test.

The results of this falsification test are included in Table 3.36 In all the model specifications,

the estimated coefficients of the frequency of outages (θj,c,p) are close to zero and not significant.

These coefficients, thus, suggest that our results on households’ probability of having an electricity

connection are unlikely to be driven by some other unobservable explanatory variables correlated

with the frequency of outages at the EA-level.

Table 3: Impact of Outages on Electrification Decisions (falsification test)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency 0.0255 0.0224 0.00562 0.0259 0.0272 0.00669
(0.0320) (0.0314) (0.0303) (0.0472) (0.0467) (0.0529)

Household controls X X

Full set of controls X X

City & prov. dummies X X X X X X

Observations 11,276 11,202 8,604 3,618 3,596 2,102
R2 0.172 0.201 0.182 0.202 0.211 0.133

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.6.3 Additional robustness checks

Finally, our results are also robust to alternative estimation techniques, different definitions of the

main variable of interest, and a variety of sample selection criteria, which can be found in Appendix

B. Here, we provide a summary of the extensive analysis performed in that Appendix.

First, we show that our results are robust if we estimate equation 1 using a probit model

instead. In Appendix B.1 we provide both the estimated probit coefficients, and also the estimated

marginal effects. These marginal effects are negative, significant, and very similar in magnitude

to the coefficients included in Table 2. Second, our results do not significantly change either if we

use alternative definitions of the outages-frequency variable. We check this fact in Appendix B.2

36The full table that includes the coefficients of the rest of the control variables is provided in the appendix.
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by using two different alternative definitions of this variable: first, we build the outages-frequency

variable using not only the outages reported by households that use electricity as the main source

of lighting, but including all the households that have electricity (regardless of their primary source

of lighting); second, we use households’ reported data on the average hours per day that they get

electricity. Finally, our results are also robust to alternative sample selection criteria. In particular,

we check in Appendix B.3 that our results do not substantially change (i) if we exclude EAs in

which there is at least one household aware of the existence of informal connections, (ii) if we

exclude EAs in which at least one household owns a refrigerator, (iii) if we include households that

own a solar panel, a battery, or a mini-generator, (iv) if we exclude EAs in which less than 10% use

electricity as the main source of lighting, (v) if we exclude those whose electricity bill is included in

the rent that they pay to their landlords, and (vi) if we exclude households that use prepaid cards.

4 Effect of Outages on Post-electrification Decisions

As explained above, access to electricity does not have an intrinsic value, but it is rather a necessary

condition in order to provide a number of benefits to households, such as appliance access (among

other things). In this section we focus on the households that have an electricity connection to

study whether frequent outages do also have an impact on their subsequent decisions.

4.1 Empirical framework and potential threats to identification

The regression model that we estimate examines the effect of the frequency of outages on the

probability with which a household owns certain large electric-powered appliances. In this regression

model, the unit of observation is a household i that lives in EA j, city c, and province p. The effect

of the frequency of outages in EA j on the probability that household i owns appliance r is measured

in the following cross-sectional regression:

yri,j,c,p = β0 + β1θj,c,p + β2Xi,j,c,p + β3Zj,c,p + λp + λc + εi,j,c,p (3)

where yri,j,c,p is a dummy variable that is equal to 1 if household i owns appliance r, and 0 otherwise;

and θj,c,p, Xi,j,c,p, Zj,c,p , λp, λc and εi,j,c,p are as defined in Section 3.1 for equation 1.
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We estimate equation 3 by using OLS, with standard errors clustered at the EA level. In this

regression, β1 is the coefficient of interest, which measures the causal impact of the frequency of

outages at the EA level on the probability with which households own electric-powered appliance

r. Identification of this causal effect hinges on the assumption that, after controlling for a set

of relevant characteristics that potentially explain whether a household owns appliance r, more

frequent outages reduce the probability of having said appliance. However, this empirical strategy

highlights at least one major threat to identification of which we should be aware.

In particular, one may be concerned that in neighborhoods (EAs) where a substantial number

of households own large appliances, outages are more likely to occur. This is because local system

overloads (which occur when the electrical load exceeds the supply) are a usual cause of blackouts

in developing countries.37 Therefore, one could hypothesize that causality also runs from appliance

ownership to power outages at the EA level, leading thus to biased and inconsistent estimates.

To correct for this potential reverse causality problem, we estimate equation 3 using Instrumen-

tal Variables (IVs). In particular, we use the average number of informal electricity connections at

the EA level as an instrument for power outages. The reason is that, as abundant literature has

documented, informal electricity connections and thefts are typically associated with frequent out-

ages —see, for instance, Lewis (2015) and Jamil (2013). Thus, the exclusion restriction is satisfied

if we consider that the presence of a large number of illegal connections in an EA is uncorrelated

with households’ appliance choices, while it positively affects the frequency of outages on that EA.

Finally, one might also be also worried about unobserved characteristics correlated with the

frequency of outages. For that reason, we also perform a falsification test for the appliances regres-

sions, using as fake outcomes appliances that do not require an electricity connection.38

4.2 Data sources and samples

To estimate equation 3, we use the same data sources and variables that are extensively explained

in Section 3.3. To this dataset, we add information on the households’ ownership of appliances,

obtained also from the “Cities Baseline Survey”. As explained above, we focus on two of the most

37For the particular case of Kenya, Taneja (2017) documents that, while the more than half of the outages are due
to lack of O&M, still about one in every three of them are caused by system overloads.

38The results of this falsification test together with some other robustness checks are included in Appendix C.
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desired appliances among Kenyans, namely refrigerators and televisions —Lee et al. (2016).39 In

particular, we use the answers to the following questions: “does your household own a refrigerator?”

and “does your household own a television?”. Our dummy variables of interest are equal to 1 if

the answers to these questions are “Yes”, and are equal to zero if the answers are “No”.

We also add additional control variables that are likely to explain whether a household owns

a refrigerator or a television. For the refrigerator regression, we add a dummy variable indicating

whether household i’s dwelling unit has a kitchen, and a dummy indicating if there is a food

shop in household i’s neighborhood (within a 20 minute walk from household i’s dwelling unit) —

households that live far from a food shop may need the refrigerator to store food for longer periods.

For the television regression, we add a dummy indicating whether there is a park in household i’s

neighborhood —a park is potentially a substitute for a television for households with kids.40

Table 4: Summary statistics (households with electricity only)

Variable Mean Std. Dev. Min. Max. N

Refrigerator 0.118 0.322 0 1 8,938
Television 0.675 0.468 0 1 8,938
Outages frequency 0.351 0.285 0 1 8,938
Slum 0.259 0.438 0 1 8,938
Urban 0.889 0.314 0 1 8,938
(log) Month expenditure 8.731 0.983 0 13.874 8,938
Robust/permanent wall 0.481 0.5 0 1 8,938
(log) Months in dwelling 3.376 1.315 0 6.951 8,917
Hh size 2.928 1.755 1 17 8,898
Head of hh primary educ 0.932 0.253 0 1 8,938
Kitchen in dwelling 0.329 0.47 0 1 8,937
Food shop nearby 0.971 0.166 0 1 8,937
Park nearby 0.146 0.353 0 1 8,933

Note: The table shows summary statistics for the subset of households that have an electricity connection at home. The first column shows
means of the variables for all households, the second column includes the standard deviations, the third column includes the minima, the
fourth column shows the maxima, and the last column includes the number of observations for each variable. Section 4.2 includes additional
information on the data.

We restrict our sample to households that have an electricity connection at home. The reason is

that the appliances that we consider (i.e., refrigerator and television) are useless for households that

lack access to electricity. Hence, it is unlikely for these households to purchase them (irrespective

of the frequency of outages in their EAs). Table 4 contains summary statistics for all the variables

used to estimate equation 3 for the sample of households that have an electricity connection.

39Previous authors show that these appliances have a clear positive welfare, health and social impact among those
that own them —Heller et al. (2005), Jensen and Oster (2009) and Inter-American Development Bank (2019).

40We exclude as controls some other variables that are unlikely to affect households’ appliances choices (e.g. distance
to power plants, street lights, etc.).
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4.3 Empirical results

The main panel of Table 5 contains both the OLS and the (second-stage) IV estimation results

for the appliances regressions, with standard errors clustered at the EA level in parenthesis. The

bottom panel of Table 5 includes the first-stage estimation results for the IV regressions.

Columns (1)-(3) include the estimates for the refrigerator regressions. While column (1) contains

the estimation results, including as controls the set of household characteristics, column (2) includes

the full set of control variables considered. In both cases, we find a negative and significant (at

the 1% level) effect of outages on refrigerators ownership. Our estimates suggest that households

in EAs that experience frequent outages on a weekly basis are about 7%-11% less likely to own a

refrigerator relative to households in EAs that experience no outages. However, the second stage of

the IV regression suggests that the impact of outages on the ownership of refrigerators is actually

larger. When using the instrument, we find that this probability increases to about 33%.

In columns (4)-(6) we include the estimates for the television regressions. The OLS coefficients

suggest that households that live in an EA that frequently experiences outages are about 10%

—if we include the household-level controls; column (4)— and 8% —if we include the full set of

controls; column (5)— less likely to own a television relative to households that live in EAs with

no exposure to outages. These results are again statistically significant at the 1% level. Once

again, the IV regression —column (6)— suggests that this effect is potentially underestimated in

the OLS regression. The coefficient of the second stage of the IV regression is about 5 times larger,

suggesting that the probability of television ownership decreases by about 53%.

4.4 Robustness checks

The empirical results on the effect of outages on appliance ownership included in Table 5 are robust

to a variety of robustness checks, which can be found in Appendix C. First, we show that our results

do not significantly change if we use the alternative definitions of the outages-frequency variable

that we discuss in Section 3.6.3 —see Appendix C.1. Second, our results are also robust to the

same alternative sample selection criteria discussed above —see Appendix C.2. Finally, we also

show that the coefficients are close to zero and not significant in a falsification test, in which we

use appliances that do not require electricity as fake outcomes —see Appendix C.3.
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Table 5: Impact of Outages on Appliances Ownership

Refrigerator Television

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

OLS and second stage IV estimates: Dependent variables is yri,j,c,p
Outages frequency -0.109∗∗∗ -0.0690∗∗∗ -0.333∗∗∗ -0.0954∗∗∗ -0.0780∗∗∗ -0.528∗∗

(0.0216) (0.0187) (0.124) (0.0254) (0.0251) (0.229)

(log) Month expenditure 0.110∗∗∗ 0.0776∗∗∗ 0.0788∗∗∗ 0.127∗∗∗ 0.124∗∗∗ 0.124∗∗∗

(0.00843) (0.00689) (0.00688) (0.00810) (0.00805) (0.00839)

Head of hh primary educ 0.0519∗∗∗ 0.0472∗∗∗ 0.0482∗∗∗ 0.146∗∗∗ 0.141∗∗∗ 0.143∗∗∗

(0.00950) (0.00917) (0.00959) (0.0193) (0.0188) (0.0195)

Robust/permanent wall 0.0460∗∗∗ 0.0227∗∗ 0.0228∗∗ 0.0918∗∗∗ 0.0803∗∗∗ 0.0796∗∗∗

(0.0120) (0.0105) (0.0109) (0.0163) (0.0160) (0.0163)

Hh size -0.00401 -0.00666∗∗∗ -0.00495∗∗ 0.0239∗∗∗ 0.0242∗∗∗ 0.0270∗∗∗

(0.00253) (0.00220) (0.00247) (0.00305) (0.00304) (0.00352)

(log) Months in dwelling 0.0153∗∗∗ 0.00580∗∗ 0.00739∗∗ 0.0292∗∗∗ 0.0293∗∗∗ 0.0311∗∗∗

(0.00300) (0.00291) (0.00309) (0.00411) (0.00409) (0.00428)

Kitchen in dwelling 0.216∗∗∗ 0.206∗∗∗

(0.0130) (0.0135)

Food shop nearby -0.00274 0.0119
(0.0195) (0.0209)

Slum -0.0312∗∗∗ -0.0108 -0.0716∗∗∗ -0.0346
(0.00991) (0.0138) (0.0159) (0.0240)

Urban 0.0307∗∗∗ 0.0328∗∗ 0.0210 0.0249
(0.0115) (0.0140) (0.0196) (0.0232)

Park nearby 0.000403 0.00362
(0.0149) (0.0171)

City dummies X X X X X X

Province dummies X X X X X X
Observations 8,877 8,876 8,876 8,877 8,872 8,872
R2 0.163 0.247 0.182 0.150 0.154 0.083

First stage IV estimates: Dependent variables is θj,c,p
Informal connections 0.265∗∗∗ 0.271∗∗∗

(0.0623) (0.0625)

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5 Conclusions and Policy Implications

Over the past years, many governments (usually in cooperation with third parties) have allocated

billions of dollars to expand the grid in developing countries (in general) and in SSA (in particular).

However, the actual increase in the amount of households with an electricity connection at home

has been paltry. This disconnection between the supply and demand of electricity infrastructure

has recently motivated researchers —Bhatia and Angelou (2015) and United Nations (2019)— as

well as practitioners in the field41 to move beyond the binary metric of providing electricity access

—defined as having an electric grid within reach— to incorporate additional dimensions of customer

experience, with quality of supply being a key one. However, while there is substantial research

concerning the impact of the reliability of power supply on firms’ electrification decisions to support

this new dimension, little existing work illuminates the extent to which power quality also affects

households’ electrification decisions.

Using survey data obtained from over 14,000 geo-localized households in Kenya, in combination

with data on the Kenyan electricity infrastructure, we provide robust evidence that inadequate

power supply quality limits consumption in two ways, namely, by reducing a household’s likelihood

of having an electricity connection and by discouraging connected ones from purchasing electrical

appliances. Consistently with Jacome et al. (2019), our findings reveal that supply reliability (or a

lack thereof) is a key factor in determining the benefits that electrification can deliver to households

and, thus, directly contributes to explaining the so-called households’ “energy access dividend” —

that is, the quantification of the benefits of electrification (SEforALL and Power for All, 2017).

From an energy-policy perspective, our findings highlight some clear policy implications. First,

contrary to the usual practice in the field, grid expansion projects should be evaluated not only

on the basis of the number of additional households which would come within reach of an electric

grid, nor just those that would have a connection at home: the reliability of the new infrastructure

should be also tracked and, moreover, whether the new customers are able to use their connections

on a daily basis to light their homes and run basic appliances (lamps, chargers, refrigerators, etc.)

should also be monitored. These evaluation metrics will provide more precise information on the

41For instance, one of the Project Development Objectives of the “Kenya Electricity Expansion Project (KEEP)”
(launched in October 2010, which provided over $400 million in credits and grants to this country), which was to
“expand access to electricity in urban, peri-urban and rural areas”, was replaced by “new consumers connected to
the grid” —World Bank (2018).
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actual impact of grid expansion projects on a household’s well-being.

Moreover, our results suggest that government efforts should not be placed only in the expansion

of the grid: indeed, this may not result in an optimal allocation of fundings if the supply is not

reliable, as these grid expansion efforts will not be fully translated into actual household benefits.

Thus, we suggest that policy-makers, institutions and donors should consider —either as stand-

alone projects or as a complementary part of grid expansion projects— allocating some funds

to improving the reliability of the grid. In fact, and as a final policy-implication, our results

suggest that the benefits of doing so (i.e., improving the electricity grid) may have been previously

underestimated inasmuch as previous scholars did not consider that greater reliability was directly

associated with an increase in both the likelihood of a household having an electricity connection

and in it using domestic electric-powered appliances that are directly linked to the welfare of said

household.
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Appendix A. Additional Figures and Tables

A.1 Preliminary evidence on the relationship between reliability and connec-

tions

In Figure A.1 we plot an index of perceived quality of supply against the average number of

households with electricity for 37 selected African countries. The data was obtained from the

Afrobarometer survey data —rounds 4, 5, and 6 (years 2008, 2011-13, and 2016 respectively). The

raw aggregate data and the fitted values suggest a positive relationship between the perceived

quality of supply and the average number of households with an electricity connection.

Figure A.1: Perceived reliability of electricity supply vs. access to electricity (Afrobarometer,
2008-2016)

A.2 Additional details on the power plants considered in the analysis

As explained in the main text, the data on power-generating facilities was obtained from different

sources. First, we include in our empirical analysis all the power-generating facilities included in
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World Bank (2014)42 However, the geographic coordinates of some of the power plants included

in this database are missing. For that reason, we combine the information on power-generating

facilities from World Bank (2014) with the geo-localization of the Kenyan power plants included

in the World Resources Institute (2018) database.43 Finally, we also add the geo-localization of

five major hydroelectric facilities in Kenya that were commissioned before 2014 and that are not

included in the previous databases. Figure A.2 contains a map of Kenya with the all the power-

generating facilities included in this study (black dots). Table A.1 contains further details on the

additional hydroelectric facilities considered that are not included in World Bank (2014) or in World

Resources Institute (2018).

Figure A.2: Map of Kenya with the location of the power plants used in the empirical analysis

Note: The figure shows the map of the Kenyan power plants included in the empirical analysis. Kenyan counties for which there are households
included in the survey are drawn in dark grey (counties for which there are no households included in the survey are drawn in light grey). Each
dot on the map represents a power plant.

A.3 Distribution of permanent and non-permanent households

Figure A.3 includes the empirical cumulative distribution function (cdf) of the outages-frequency

variable (θj,c,p). We plot the cdf both for the sample of households that do not live on a permanent

42According to the information provided by the World Bank, this information was obtained from the Kenya Power
and Lighting Company’s 2014 annual report, and from the Kenyan Energy Regulatory Commission.

43We exclude the power plants that were commissioned after 2013 (when the survey was conducted).
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Table A.1: Additional major hydroelectric power stations considered that are not included in World
Bank (2014) or in World Resources Institute (2018)

Power plant Installed
City County Coordinates

name capacity (MW)

Wanjii Power Station 7.4 Kamuiru Muranga -0.74944, 37.17472
Ndula Power Station 2.0 Ngoliba Kiambu -1.02639, 37.24333
Gogo Power Station 2.0 Kajulu Migori -0.90932, 34.34919

Sagana Power Station 1.5 Mutathini Nyeri -0.47418, 37.05236
Sosian Power Station 0.4 Eldoret Uasin Gishu 0.54936, 35.17855

basis in their dwelling units (black line) and for the sample of households that live on a permanent

basis in their dwelling units (gray line). The distribution of θj,c,p is fairly similar for both subsets of

households. The average of θj,c,p for “non-permanent” households is 0.39 (with standard deviation

equal to 0.31), and the average of θj,c,p for “permanent” households is 0.33 (with standard deviation

equal to 0.27).

Figure A.3: Empirical cdf of the distribution of the outages-frequency variable (θj,c,p) across non-
permanent and permanent households
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in their dwelling units.
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Appendix B. Effect of Outages on Electricity Connections: Robust-

ness Checks

Although we consider that our empirical strategy is strong enough to support the causal link

between the frequency of outages and the probability with which households have an electricity

connection, we recognize there are alternative methodologies, definitions of the outcome variable,

and subsamples that we could have been employed. Hence, in this appendix we engage in an

extensive procedure of robustness checks, in order to verify that the results are not sensitive to the

choices used throughout the paper.

B.1 Non-linear, binary regression model

In Section 3, we estimate the impact of the frequency of outages on the probability with which

households have an electricity connection (equation 1) by using ordinary least squares (OLS).

Given the binary nature of the outcome variable, the usage of OLS means that the estimated

technique takes the form of a linear probability model (LPM). We did so because many authors

have recently supported the usage of the LPM, especially (i) if the true probability model is not

known, and (ii) in the presence of fixed effects —see, among others, Greene (2002), Angrist and

Pischke (2008), Bellemare et al. (2015), and Allcott and Taubinsky (2015). However, some other

authors have previously argued that the LMP might also present some bias and inconsistency

problems in comparison to the usual probit (or logit) regression model —Horrace and Oaxaca

(2006).

To double-check that our results are not significantly affected by the model choice, in Table

B.1 (Panel A) we include the estimated coefficients of equation 1 using instead a probit regression

model.44 In this case, the coefficient of interest is still negative and significant at the 1% level in

all the sub-samples considered.

Notice, however, that the estimated coefficients using the probit regression model are substan-

tially different from those included in Table 2. The reason is that the coefficients obtained in a

probit regression do not have a straightforward interpretation. For that reason, in Table B.1 (Panel

B) we include the estimated marginal effects, which can be easily compared with those obtained

44Similar results are obtained using a logit regression model. Results are available upon request.
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Table B.1: Impact of Outages on Electrification Decisions (probit regression)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Panel A: Probit coefficients

Outages frequency -0.229∗∗ -0.235∗∗ -0.235∗∗ -0.370∗∗ -0.396∗∗ -0.397∗

(0.0997) (0.0978) (0.108) (0.178) (0.176) (0.204)

Panel B: Probit marginal effects

Outages frequency -0.0809∗∗ -0.0796∗∗ -0.0816∗∗ -0.0791∗∗ -0.0786∗∗ -0.0796∗

(0.0351) (0.0329) (0.0373) (0.0384) (0.0352) (0.0412)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,101 13,015 10,121 4,176 4,152 2,603
Pseudo R2 0.039 0.182 0.199 0.037 0.101 0.142

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

using the LPM model. The estimated marginal effects are negative, significant and very similar in

magnitude to those obtained in Table 2.

B.2 Alternative definitions of frequency of outages

In Section 3.3, we build the frequency of outages for each EA (θj,c,p) using data from households

that use electricity as their primary source of lighting. We now provide evidence that our main

empirical results are similar to the empirical results included in the main text if we use alternative

definitions of the outages-frequency variable.

First, we build an alternative outage frequency variable using information reported not just

by the subset of households that use electricity as their primary source of lighting, but using the

information reported by the full subset of households that have electricity at home. That is,

θj,c,p =

∑nj,c,p
i=1 1{Outages at least once a week}i,j,c,p

nj,c,p
(B.1)

where nj,c,p is the total number of households that are connected to electricity for each EA. The

empirical results using this alternative definition of the frequency of outages are included in Table
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B.2. The estimated coefficients are extremely similar to those obtained in Table 2.

Table B.2: Impact of Outages on Electrification Decisions (alternative outages-frequency)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency (alt.) -0.0777∗∗ -0.0569∗ -0.0578∗ -0.0854∗ -0.0819∗ -0.0910∗

(0.0351) (0.0295) (0.0330) (0.0455) (0.0436) (0.0515)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,130 13,044 10,126 4,192 4,168 2,605
R2 0.047 0.208 0.228 0.030 0.087 0.124

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Second, we use households’ reported data on the average number of hours per day that they

get electricity in their dwelling units. Using this information included in the survey, we build the

following alternative measure of the outages-frequency variable:

θj,c,p =

∑nj,c,p
i=1 {# hours of electricity per day}i,j,c,p

nj,c,p
(B.2)

where nj,c,p is the total number of households that have an electricity connection for each EA.

Unfortunately, the variable that captures this alternative definition of outages-frequency is

“censored”; that is, there is a disproportionate number of EAs for which the average number of

hours per day of power supply is equal to 24, which is also the upper bound of this variable.

More precisely, among all the households considered, over 40% of them live in an EA for which

this variable is equal to 24. This feature of our regressor of interest poses potential problems to

identification and estimation, as discussed by Rigobon and Stoker (2007). Therefore, following

these authors, we propose the following alternative estimation strategy. We create two variables;

the first one is a dummy variable that is equal to 1 if θj,c,p is equal to 24, and 0 otherwise. The

second one is a continuous variable that is equal to the actual value of θj,c,p if it is not equal to 24,

and 0 otherwise. The coefficients of these two variables are expected to be positive and significant.

That is, for the former variable (the dummy one), EAs that receive electricity 24 hours per day (on

average) are expected to increase the probability with which a household that lives in such an EA
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has an electricity connection. For the latter variable (the continuous one), having an additional

hour of electricity per day at the EA level is also expected to increase a household’s probability of

having a connection.

The empirical results using these two variables are included in Table B.3. Consistently, we

find that the coefficients of both variables are positive. These coefficients are statistically different

to zero in all the model specifications using the full sample of households, and also statistically

different to zero using the subsample of “permanent” households in all the model specifications,

except in the last one —column (7). In any case, as Rigobon and Stoker (2007) explain, these

coefficients should to be “interpreted with care”.

Table B.3: Impact of Outages on Electrification Decisions (using avg. hours of power)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Avg. hours with power (<24) 0.0228∗∗∗ 0.0142∗∗∗ 0.0110∗∗ 0.0168∗∗∗ 0.0145∗∗∗ 0.00909
(0.00431) (0.00374) (0.00434) (0.00554) (0.00543) (0.00660)

Avg. hours with power (=24) 0.413∗∗∗ 0.229∗∗∗ 0.171∗ 0.294∗∗ 0.247∗∗ 0.126
(0.0933) (0.0823) (0.0946) (0.121) (0.118) (0.142)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,130 13,044 10,126 4,192 4,168 2,605
R2 0.058 0.215 0.232 0.039 0.094 0.129

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

B.3 Alternative sample selection

As discussed above, one potential threat to identification relates to the concern that, in some

particular neighborhoods, a marginal household connected to electricity is likely to cause additional

outages by overloading the local system. In particular, this is the case in neighborhoods where

informal connections are relatively common (as informal connections are typically associated with

frequent outages), and in neighborhoods where households are likely to use electricity to plug-in

high-power appliances (such as refrigerators). These neighborhoods are, thus, a potential source

of endogeneity (“reverse causality”) that bias our OLS coefficients. Therefore, in this appendix we
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estimate equation 1 after excluding from the sample the EAs in which this issue is a major concern.

Table B.4 contains the estimated coefficients after removing from our sample EAs in which

at least one household is aware of the existence of informal connections. Table B.5 includes the

coefficients after removing from our sample EAs in which at least one household owns a refrigerator

(which is a high-power domestic appliance). In both cases, the coefficients remain negative and

similar in magnitude as those obtained in Table 2. They are also statistically significant in all

the model specifications if we use the full set of households; and also statistically significant if we

use just the subset of “permanent” households in our sample in all the model specifications except

in the one included in column (7) (i.e., using full set of controls). This is potentially due to the

substantial decrease in the number of observations.

Table B.4: Impact of Outages on Electrification Decisions (drop EAs with informal connections)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency -0.0708∗ -0.0846∗∗∗ -0.0901∗∗∗ -0.0862∗ -0.0821∗ -0.0929
(0.0379) (0.0315) (0.0335) (0.0473) (0.0467) (0.0603)

City dummies X X X X X X

Province dummies X X X X X X
Observations 6,612 6,572 5,426 2,119 2,107 1,439
R2 0.066 0.239 0.257 0.024 0.093 0.117

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.5: Impact of Outages on Electrification Decisions (drop EAs with refrigerators)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency -0.0635∗ -0.0591∗ -0.0621∗ -0.0801∗ -0.0833∗ -0.0844
(0.0357) (0.0308) (0.0344) (0.0486) (0.0470) (0.0555)

City dummies X X X X X X

Province dummies X X X X X X
Observations 12,040 11,959 9,326 3,598 3,576 2,236
R2 0.052 0.197 0.215 0.035 0.088 0.122

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.6: Impact of Outages on Electrification Decisions (alternative samples)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Panel A: Keep households with solar panel/battery/mini-generator

Outages frequency -0.0794∗∗ -0.0577∗∗ -0.0585∗ -0.0904∗∗ -0.0862∗∗ -0.0908∗

(0.0348) (0.0294) (0.0328) (0.0445) (0.0428) (0.0508)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,181 13,095 10,175 4,211 4,187 2,618
R2 0.048 0.210 0.228 0.033 0.089 0.124

Panel B: Drop if < 10% of household use light

Outages frequency -0.0943∗∗∗ -0.0727∗∗∗ -0.0788∗∗∗ -0.0921∗∗ -0.0879∗∗ -0.0902∗

(0.0333) (0.0279) (0.0297) (0.0447) (0.0431) (0.0509)

City dummies X X X X X X

Province dummies X X X X X X
Observations 13,020 12,935 10,040 4,177 4,153 2,603
R2 0.050 0.210 0.230 0.032 0.088 0.124

Panel C: Drop if electricity bill included in monthly rent

Outages frequency -0.144∗∗∗ -0.0832∗ -0.0797∗ -0.234∗∗∗ -0.213∗∗∗ -0.189∗∗∗

(0.0517) (0.0426) (0.0447) (0.0639) (0.0594) (0.0624)

City dummies X X X X X X

Province dummies X X X X X X
Observations 6,709 6,667 5,491 2,092 2,080 1,622
R2 0.073 0.253 0.277 0.073 0.154 0.168

Panel D: Drop households with prepaid contracts

Outages frequency -0.0728∗∗ -0.0569∗ -0.0556∗ -0.0891∗ -0.0869∗∗ -0.0885∗

(0.0353) (0.0297) (0.0330) (0.0454) (0.0436) (0.0514)

City dummies X X X X X X

Province dummies X X X X X X
Observations 12,937 12,855 9,992 4,104 4,081 2,552
R2 0.047 0.209 0.228 0.031 0.088 0.124

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Finally, we check that our empirical results do not substantially change if we use alternative

sample selection criteria. The estimated coefficients for the outages-frequency variable are included

in Table B.6. First, in Panel A, we include in our sample the subset of households that own either

a solar panel, a battery, or a mini-generator. Next, in Panel B, we use our main sample but we

exclude households that live in EAs where less than 10% use electricity as the primary source of

lighting. In Panel C, we present the coefficients after removing from our main sample households

whose electricity bill is included in the rent that they pay to their landlords. Finally, in Panel D, we

drop from our sample households that do not pay directly to the utility company either, but that

rather use prepaid cards. In all these cases, the coefficient of interest remains negative, significant,

and similar in magnitude to those included in Table 2

B.4 Falsification test (full set of coefficients)

In this appendix we provide the full set of coefficients of the falsification test included in Section

3.6.2 in the main text. These coefficients are included in Table B.7.

B.5 Additional propensity score-matching estimations

Finally, in this appendix we present additional results of the rolling version of the propensity

score-matching estimator —see Section 3.6.1.

First, Figure B.1 includes the results of the propensity score-matching estimator using just the

subset of “permanent” households. As is the case in Figure 3, we find that for greater values of x,

the impact of outages on households’ electrification decisions becomes more negative and significant

(due to the decrease in the number of observations, we lose some precision in these estimates).

Finally, Figure B.2 contains additional results of the propensity score-matching estimator using

the alternative subsamples suggested in Appendix B.3 (Table B.6). That is, we use our main

sample but (a) including the subset of households that own either a solar panel, a battery, or a

mini-generator; (b) excluding households that live in EAs where less than 10% use electricity as the

primary source of lighting; (c) removing households whose electricity bill is included in the rent that

they pay to their landlords; and (d) dropping households that do not pay directly to the utility

company either, but that rather use prepaid cards. In all cases, the result do not substantially

change relative to the estimates included in Figure 3.

44



Table B.7: Impact of Outages on Electrification Decisions (falsification test; full set of coefficients)

Full sample Permanent households

(1) (2) (3) (4) (5) (6)

Outages frequency 0.0255 0.0224 0.00562 0.0259 0.0272 0.00669
(0.0320) (0.0314) (0.0303) (0.0472) (0.0467) (0.0529)

(log) Month expenditure 0.0351∗∗∗ 0.0369∗∗∗ -0.00856 0.00000821
(0.00769) (0.00796) (0.0113) (0.0128)

Head of hh primary educ 0.103∗∗∗ 0.0870∗∗∗ 0.0908∗∗∗ 0.0935∗∗

(0.0156) (0.0177) (0.0302) (0.0450)

Robust/permanent wall 0.145∗∗∗ 0.102∗∗∗ 0.0778∗∗∗ 0.102∗∗∗

(0.0186) (0.0167) (0.0265) (0.0340)

Hh size -0.0160∗∗∗ -0.0156∗∗∗ -0.0104∗∗ -0.0134∗

(0.00309) (0.00340) (0.00502) (0.00687)

(log) Months in dwelling -0.000295 -0.00470 -0.000812 -0.0143
(0.00394) (0.00460) (0.00611) (0.00933)

Distance grid (no Garissa) -0.00488 -0.00942
(0.00358) (0.00724)

Informal connections -0.0584∗∗ 0.0433
(0.0252) (0.0427)

Street lights 0.0289 0.0556∗

(0.0218) (0.0289)

Distance plant (no Garissa) 0.00139 0.00715
(0.00219) (0.00586)

Slum -0.137∗∗∗ -0.103∗∗

(0.0254) (0.0417)

Urban -0.0179 -0.0754
(0.0283) (0.0645)

City dummies X X X X X X

Province dummies X X X X X X
Observations 11,276 11,202 8,604 3,618 3,596 2,102
R2 0.172 0.201 0.182 0.202 0.211 0.133

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure B.1: Propensity-score matching estimator for different “treated” samples (“permanent”
households only)

*

*****
**

***

-.2
-.1

0
.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Treated if Outages Intensity > x

Note: The figure shows the propensity-score matching coefficients for the outages-frequency variable (θj,c,p) after matching treated and control
households. From left to right, the households that live in EAs for which the outages-frequency variable is greater than x ∈ {0.1, · · · , 0.9} are
considered as treated; and the control households are those that live in EAs for which the outages-frequency variable is equal to zero. Households
are matched (using propensity-score matching) on (i) income, quality of the dwelling unit (proxied by “robust wall” dummy), head of household
education, urban dummy and slum dummy (coefficients are displayed with a square); and on (ii) the full set of household-level controls included in
our main regressions (coefficients are displayed with a triangle). Vertical bands represent ±1.96 times the standard error for each point estimate,
and the significance levels of the estimated coefficients are as follows: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. These results are obtained using the
sub-set of “permanent” households.
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Appendix C. Effect of Outages on Post-electrification Decisions:

Robustness Checks

Although we consider that our empirical strategy is strong enough to support the causal link

between the frequency of outages and the probability with which a household owns certain large

electric-powered appliances, we recognize there are different alternative definitions of the outcome

variable and subsamples that we could have been employed. Hence, in this appendix we engage in

an extensive procedure of robustness checks, in order to verify that the results are not sensitive to

the choices used throughout the paper.

C.1 Alternative definitions of frequency of outages

In Section 3.3, we build the frequency of outages for each EA (θj,c,p) using data from households

that use electricity as their primary source of lighting. We now provide evidence that our main

empirical results are similar to the empirical results in the main text if we use the alternative

definitions of the outages-frequency variable that we use in appendix B.2.

First, we use the alternative definition of outages-frequency included in equation B.1 (i.e.,

using the full subset of households that have electricity at home). The estimated coefficients for

the appliances regressions are included in Table C.1. These coefficients are extremely similar in

magnitude to those included in Table 5.

Second, we use households’ reported data on the average number of hours per day that they

get electricity in their dwelling units —see equation B.2. As done in Appendix B.2, we use two

variables: the first one is a dummy variable that is equal to 1 if θj,c,p is equal to 24, and 0 otherwise.

The second one is a continuous variable that is equal to the actual value of θj,c,p if it is not equal

to 24, and 0 otherwise. The coefficients of these two variables are expected to be positive and

significant. That is, for the former variable (the dummy one), EAs that receive electricity 24 hours

per day (on average) are expected to increase the probability with which a household that lives

in such an EA owns a refrigerator/television. For the latter variable (the continuous one), having

an additional hour of electricity per day at the EA level is also expected to increase a household’s

probability of purchasing these appliances.
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Table C.1: Impact of Outages on Appliances Ownership (alternative outages-frequency)

Refrigerator Television

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

Outages frequency (alt.) -0.109∗∗∗ -0.0697∗∗∗ -0.337∗∗∗ -0.0901∗∗∗ -0.0727∗∗∗ -0.525∗∗

(0.0217) (0.0188) (0.126) (0.0257) (0.0254) (0.230)

City dummies X X X X X X

Province dummies X X X X X X
Observations 8,883 8,882 8,882 8,883 8,878 8,878
R2 0.163 0.246 0.181 0.149 0.153 0.083

First stage IV estimates: Dependent variables is θj,c,p
Informal connections 0.263∗∗∗ 0.270∗∗∗

(0.0625) (0.0626)

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C.2: Impact of Outages on Appliances Ownership (using avg. hours of power)

Refrigerator Television

(1) (2) (3) (4)
OLS OLS OLS OLS

Avg. hours with power (<24) 0.00502∗ 0.00298 0.0128∗∗∗ 0.0107∗∗∗

(0.00270) (0.00276) (0.00347) (0.00352)

Avg. hours with power (=24) 0.150∗∗ 0.105∗ 0.318∗∗∗ 0.266∗∗∗

(0.0583) (0.0591) (0.0748) (0.0760)

City dummies X X X X

Province dummies X X X X
Observations 8,883 8,882 8,883 8,878
R2 0.161 0.167 0.151 0.154

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Consistently, in Table C.2 we see that both coefficients are positive and significant.45 These

coefficients suggest both that households that receive power 24/7, and that households that receive

an extra hour of electricity are more likely to own these appliances.

C.2 Alternative sample selection

Next, we check that the coefficients obtained for the appliances regressions are also robust to the

alternative sample selection criteria that we use in Appendix B. The estimated coefficients are

included in Table C.3, in which we consider the following inclusion/exclusion of households. First,

in Panel A, we include in our main sample the subset of households that own either a solar panel,

a battery or a mini-generator. In Panel B, we exclude from our sample households that live in

EAs where less than 10% use electricity as the main source of lighting. In Panel C, we present

the coefficients after removing households whose electricity bill is included in the monthly rent.

Finally, in Panel D, we exclude households that use prepaid cards. In all these cases, the coefficient

of interest remains negative, significant, and similar in magnitude to those included in Table 5.

C.3 Falsification test

Finally, we perform placebo-based falsification tests for the appliances regressions. We estimate

equation 3 again but we use two fake outcome variables instead that are “similar” to our actual

outcome variables (a dummy indicating whether a household owns a refrigerator/television) but

that are known to be unaffected by outages. In particular, we use a dummy variable that indicates

whether a household has/does not have a sewing machine as our fake outcome for the refrigerator

regressions, and a dummy variable that indicates whether a household has/does not have a radio as

our fake outcome for the television regressions. Bearing in mind that sewing machines are manually

powered, and that radios typically use portable batteries, if there are no θj,c,p-correlated unobserved

variables that might potentially explain whether a household has a refrigerator/television, then we

should expect the coefficients of θj,c,p to be close to zero and not significant.

The results of these falsification tests are included in Table C.4. Consistently, we find that the

estimated coefficients for θj,c,p are close to zero and not significant.

45The IV regressions were not included in Table C.2 because we would need an additional instrument to estimate
them.
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Table C.3: Impact of Outages on Appliances Ownership (alternative samples)

Refrigerator Television

(1) (2) (3) (4) (5) (6)
OLS OLS IV OLS OLS IV

Panel A: Keep households with solar panel/battery/mini-generator

Outages frequency -0.114∗∗∗ -0.0726∗∗∗ -0.381∗∗∗ -0.0939∗∗∗ -0.0767∗∗∗ -0.508∗∗

(0.0221) (0.0191) (0.130) (0.0253) (0.0249) (0.224)

City dummies X X X X X X

Province dummies X X X X X X
Observations 8,941 8,940 8,940 8,941 8,936 8,936
R2 0.175 0.258 0.181 0.151 0.155 0.088

Panel B: Drop if < 10% of household use light

Outages frequency -0.109∗∗∗ -0.0693∗∗∗ -0.334∗∗∗ -0.0959∗∗∗ -0.0784∗∗∗ -0.532∗∗

(0.0216) (0.0187) (0.125) (0.0255) (0.0252) (0.230)

City dummies X X X X X X

Province dummies X X X X X X
Observations 8,873 8,872 8,872 8,873 8,868 8,868
R2 0.164 0.247 0.182 0.150 0.154 0.082

Panel C: Drop if electricity bill included in monthly rent

Outages frequency -0.166∗∗∗ -0.110∗∗∗ -0.248∗∗ -0.0908∗∗ -0.0604 -0.533∗∗

(0.0317) (0.0282) (0.110) (0.0376) (0.0377) (0.233)

City dummies X X X X X X

Province dummies X X X X X X
Observations 3,980 3,980 3,980 3,980 3,978 3,978
R2 0.177 0.288 0.255 0.137 0.145 0.077

Panel D: Drop households with prepaid contracts

Outages frequency -0.0995∗∗∗ -0.0621∗∗∗ -0.292∗∗ -0.0991∗∗∗ -0.0821∗∗∗ -0.531∗∗

(0.0213) (0.0185) (0.120) (0.0255) (0.0252) (0.238)

City dummies X X X X X X

Province dummies X X X X X X
Observations 8,716 8,715 8,715 8,716 8,711 8,711
R2 0.157 0.240 0.185 0.150 0.153 0.084

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.4: Impact of Outages on Appliances Ownership (falsification test)

Sewing machine Radio

(1) (2) (3) (4)
OLS OLS OLS OLS

Outages frequency -0.00613 -0.00535 -0.0183 -0.0149
(0.00647) (0.00654) (0.0223) (0.0227)

(log) Month expenditure 0.00795∗∗∗ 0.00678∗∗∗ 0.0404∗∗∗ 0.0394∗∗∗

(0.00177) (0.00177) (0.00533) (0.00531)

Head of hh primary educ 0.0101∗∗ 0.0102∗∗ 0.0412∗∗ 0.0392∗∗

(0.00441) (0.00441) (0.0178) (0.0178)

Robust/permanent wall 0.00916∗∗ 0.00859∗∗ -0.00108 -0.00331
(0.00419) (0.00436) (0.0122) (0.0121)

Hh size 0.00332∗∗∗ 0.00317∗∗∗ -0.00211 -0.00195
(0.00112) (0.00112) (0.00274) (0.00275)

(log) Months in dwelling 0.00351∗∗∗ 0.00310∗∗ 0.0339∗∗∗ 0.0336∗∗∗

(0.00135) (0.00142) (0.00355) (0.00357)

Kitchen in dwelling 0.00883∗∗

(0.00391)

Food shop nearby 0.00714
(0.00769)

Slum 0.00145 -0.0134
(0.00393) (0.0122)

Urban -0.00101 -0.00641
(0.00561) (0.0157)

Park nearby 0.0116
(0.0139)

City dummies X X X X

Province dummies X X X X
Observations 8,877 8,876 8,877 8,872
R2 0.020 0.020 0.056 0.056

Standard errors clustered at the Enumeration Area (EA) in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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